Микросхема к1182пм1р фазовый регулятор мощности

Это набор компонентов
(см.спецификацию ниже) − + В корзину

Спецификация набора

То, что у вас уже есть, вы можете удалить в корзине.

Наименование Цена Кол-во
К1182ПМ1Р, Фазовый регулятор [PowerDIP (12+4)] 75 руб. 1
ECAP (К50-35 мини), 1 мкФ, 25 В, 4х7мм, Конденсатор электролитический алюминиевый миниатюрный 5 руб. 2
CF-50 (С1-4) 0.5 Вт, 510 Ом, 5%, Резистор углеродистый 3 руб. 1
R-17N3-B50K, L15KC, 50 кОм, Резистор переменный 46 руб. 1
BTA41-600BRG, Симистор 40А 600В, 50мА Standard [TOP-3] 150 руб. 1
KLS2-300-5.00-02P-2S (DG300-5.0-02P-12), Клеммник винтовой, 2-контактный, 5мм, прямой 10 руб. 3
Печатная плата RDC1-0018, Печатная плата с разводкой, FR4 57.15х31.75мм (1.5мм, 18мкм) 60 руб. 1

Фазовый регулятор мощности на микросхеме К1182ПМ1Р и симисторе BTA41-600 (40 А, 8,8 кВт). Данное устройство предназначено для: плавного включения, выключения электрических ламп и регулировки яркости их свечения регулировки мощности паяльника; скорости вращения электродвигателей.

Купить модуль RDC1-0018 нашего производства можно здесь.

Электрическая схема

Когда к разъему P3 подключен выключатель SW1 и времязадающая RC цепочка устройство работает в режиме плавного включения лампы или электродвигателя. Время плавного включения зависит от емкости конденсатора C3, а время плавного выключения – от сопротивления резистора R2. Подберите нужный для вас режим.

Для использования устройства в качестве фотореле с плавным регулированием мощности – вместо выключателя можно подключить фотоэлемент.

При подключении к разъему P3 переменного резистора устройство работает как регулятор мощности.

Технические характеристики:

– напряжение сети: 220 В;

– максимальный ток нагрузки: 40 А;

– размер печатной платы 50,80 х 25,40 мм.

Внимание!

На плате имеется напряжение опасное для жизни человека – соблюдайте правила техники безопасности!

При токе нагрузки более 1А симистор необходимо установить на радиатор площадью не менее 100 кв.см
При токе нагрузки более 5А проводники на печатной плате не покрытые маской пропаять оголенным проводом сечением 2,5 кв.мм

Схема подключения.

В зависимости от симистора который вы будете использовать в проекте возможны два варианта подключения.

Распиновка симистора AAG (BTA41)

Распиновка симистора GAA

Это открытый проект! Лицензия, под которой он распространяется – Creative Commons – Attribution – Share Alike license.

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

КР1182ПМ1

Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.

Внутренняя структура микросхемы КР1182ПМ1.

Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.

Читайте также:  Как открыть dff в 3ds max

Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.

Таблица номиналов элементов

  • C1 – 47 мкФ 10В;
  • C2, С3 – 1 мкФ 6,3 В;
  • DA1 – КР1182ПМ1;
  • R1 – переменный резистор 68 кОм;
  • R2 – 470 Ом;
  • S1 – кнопка выключения;
  • VS1 – BT136-600E.

В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.

Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.

18 thoughts on “ Симисторный регулятор мощности, схема на КР1182ПМ1 ”

Микросхема КР1182ПМ1 описание. Кстати полных зарубежных аналогов нету, разработка и выпуск отечественного ЗАО «НТЦ СИТ».

В маломощных (до 200 — 300 Вт) регуляторах лучше использовать транзисторные, а не симисторные схемы. Они не искажают форму сигнала (изменяется амплитуда, а не фаза) поэтому избавлены от помех.

Для прямого изменения амплитуды сетевого напряжения в регуляторах на транзисторах, уже при 50 ваттной нагрузке потребуется огромный радиатор.
Импульсные источники питания на транзисторах намного сложнее симисторных, и включают в себя преобразователь частоты, тоже создающий помехи, которые затем необходимо подавлять дополнительными фильтрами.
Симисторные регуляторы обладают высоким КПД, и часто работают вообще без радиаторов, они компактны и легки в регулировке.
Их особенно выгодно применять на повышенных мощностях, где коммутируются большие токи, например в сварочных аппаратах.
Что касается применения КР1182ПМ1, то если в самой нижней схеме R1 заменить на постоянный в 1М, и параллельно ему добавить фототранзистор, например КТФ102, то совместно с лампой можно получить автоматический регулятор освещения.

Ну, лампочке, к примеру, форма сигнала до лампочки, уж простите за каламбур. А чем меньше потребляемая мощность, тем меньше и помехи наводимые в сети. Двигатели электроинструмента и сами являются источниками помех, даже без регуляции. Так что вопрос целесообразности применения зависит больше от свойств нагрузки, а не от мощности.
В любом случае, будущее данного направления за частотными преобразователями, а не за фазовыми. Там и с КПД и с формой сигнала все хорошо… с ценой только плохо. Настолько плохо, что используются пока только в промышленности. В быту очень редко.

Цена сейчас определяющий фактор. Для мощных нагрузок симисторы дешевле, чем транзисторы и проще. Управление ими проще. Чаще всё равно требуется управлять двигателями или регулировать температуру. Помехи критичны в специализированной аппаратуре.

Собирал данную схему на панели для монтажа , что то не так сначала скачек напряжения до 80 вольт далее моментальное его падение до нуля и все…В чем проблемам может быть? в нагрузке была лампа на 60 ватт

Вход перепутан с выходом

При использовании транзисторов необходимы большие радиаторы, что делает схему громоздкой.

Ошибка в схеме. При подключении симистора перепутаны T1 и T2.

Ошибка в схеме. Плюс конденсатора С2 должен быть присоединен к 16-му выводу микросхемы.

данную схему собрал на зарубежном аналоге, как раз таки не создающем никаких помех (Недоработка нашего производителя)

Подскажите,пожалуйста,марку зарубежного аналога.

Анплогов нет. м.д. немножко пофантазировал

Здравствуйте коллеги! Ох и намучался я со схемой собранной по последнему рисунку (с микросхемой и симмистром ВТ136)… И так и сяк и нагрузку с другого плеча и резистор в цепь 9,10,11 ножек… И на другой микросхеме и симмистр менять пробовал… В нуле переменника горит в пол накала, потом сразу в полный при небольшом повороте. Всё наладилось когда взял симмистр другой — ВТА140. Сразу всё наладилась — и глубина регулировки и плавность… У кого-то получилось использовать в этой схеме ВТ136?

Читайте также:  Как зайти на hidden wiki

Падение напряжения недопустимо высоко 😈 на нагрузке 170в при 215в в сети

Попробовал эту схему c симисторjv ВТВ12-600. Нагрузка — двигатель от электрорубанка.
Первое — симистор на схере неправильно включен. Нужно перевернуть его вверх тормашками.
Во вторых горит резистор R2. Быстро обугливается. резистор 0.5 Вт

Собирайте по даташиту там указаны все штатные схемы включения и будет Вам счастье собирал устройсво плавного пуска все хорошо

Переделал 12в шуруповёрт для работы от сети. Подключаю к самодельному зарядному 14.5в. Работает аж свистит. Нашёл в инете, что можно снизить напряжение диодом. Подскажите модель или х-ки диода. Сам что-то не могу выбрать.

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

КР1182ПМ1

Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.

Внутренняя структура микросхемы КР1182ПМ1.

Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.

Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.

Таблица номиналов элементов

  • C1 – 47 мкФ 10В;
  • C2, С3 – 1 мкФ 6,3 В;
  • DA1 – КР1182ПМ1;
  • R1 – переменный резистор 68 кОм;
  • R2 – 470 Ом;
  • S1 – кнопка выключения;
  • VS1 – BT136-600E.

В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.

Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.

Читайте также:  Conntrack table is full now

18 thoughts on “ Симисторный регулятор мощности, схема на КР1182ПМ1 ”

Микросхема КР1182ПМ1 описание. Кстати полных зарубежных аналогов нету, разработка и выпуск отечественного ЗАО «НТЦ СИТ».

В маломощных (до 200 — 300 Вт) регуляторах лучше использовать транзисторные, а не симисторные схемы. Они не искажают форму сигнала (изменяется амплитуда, а не фаза) поэтому избавлены от помех.

Для прямого изменения амплитуды сетевого напряжения в регуляторах на транзисторах, уже при 50 ваттной нагрузке потребуется огромный радиатор.
Импульсные источники питания на транзисторах намного сложнее симисторных, и включают в себя преобразователь частоты, тоже создающий помехи, которые затем необходимо подавлять дополнительными фильтрами.
Симисторные регуляторы обладают высоким КПД, и часто работают вообще без радиаторов, они компактны и легки в регулировке.
Их особенно выгодно применять на повышенных мощностях, где коммутируются большие токи, например в сварочных аппаратах.
Что касается применения КР1182ПМ1, то если в самой нижней схеме R1 заменить на постоянный в 1М, и параллельно ему добавить фототранзистор, например КТФ102, то совместно с лампой можно получить автоматический регулятор освещения.

Ну, лампочке, к примеру, форма сигнала до лампочки, уж простите за каламбур. А чем меньше потребляемая мощность, тем меньше и помехи наводимые в сети. Двигатели электроинструмента и сами являются источниками помех, даже без регуляции. Так что вопрос целесообразности применения зависит больше от свойств нагрузки, а не от мощности.
В любом случае, будущее данного направления за частотными преобразователями, а не за фазовыми. Там и с КПД и с формой сигнала все хорошо… с ценой только плохо. Настолько плохо, что используются пока только в промышленности. В быту очень редко.

Цена сейчас определяющий фактор. Для мощных нагрузок симисторы дешевле, чем транзисторы и проще. Управление ими проще. Чаще всё равно требуется управлять двигателями или регулировать температуру. Помехи критичны в специализированной аппаратуре.

Собирал данную схему на панели для монтажа , что то не так сначала скачек напряжения до 80 вольт далее моментальное его падение до нуля и все…В чем проблемам может быть? в нагрузке была лампа на 60 ватт

Вход перепутан с выходом

При использовании транзисторов необходимы большие радиаторы, что делает схему громоздкой.

Ошибка в схеме. При подключении симистора перепутаны T1 и T2.

Ошибка в схеме. Плюс конденсатора С2 должен быть присоединен к 16-му выводу микросхемы.

данную схему собрал на зарубежном аналоге, как раз таки не создающем никаких помех (Недоработка нашего производителя)

Подскажите,пожалуйста,марку зарубежного аналога.

Анплогов нет. м.д. немножко пофантазировал

Здравствуйте коллеги! Ох и намучался я со схемой собранной по последнему рисунку (с микросхемой и симмистром ВТ136)… И так и сяк и нагрузку с другого плеча и резистор в цепь 9,10,11 ножек… И на другой микросхеме и симмистр менять пробовал… В нуле переменника горит в пол накала, потом сразу в полный при небольшом повороте. Всё наладилось когда взял симмистр другой — ВТА140. Сразу всё наладилась — и глубина регулировки и плавность… У кого-то получилось использовать в этой схеме ВТ136?

Падение напряжения недопустимо высоко 😈 на нагрузке 170в при 215в в сети

Попробовал эту схему c симисторjv ВТВ12-600. Нагрузка — двигатель от электрорубанка.
Первое — симистор на схере неправильно включен. Нужно перевернуть его вверх тормашками.
Во вторых горит резистор R2. Быстро обугливается. резистор 0.5 Вт

Собирайте по даташиту там указаны все штатные схемы включения и будет Вам счастье собирал устройсво плавного пуска все хорошо

Переделал 12в шуруповёрт для работы от сети. Подключаю к самодельному зарядному 14.5в. Работает аж свистит. Нашёл в инете, что можно снизить напряжение диодом. Подскажите модель или х-ки диода. Сам что-то не могу выбрать.

Оцените статью
ПК Знаток
Добавить комментарий

Adblock detector