- Формулы для расчета площади параллелограмма
- Как найти площадь параллелограмма, если известны сторона и высота
- Формула площади параллелограмма, если известны стороны и угол
- Как найти площадь параллелограмма через диагонали
- Площадь параллелограмма по основанию и высоте параллелограмма
- Площадь параллелограмма по стороне и высоте, опущенной на эту сторону
- Площадь параллелограмма по двум сторонам и углу между ними
- Площадь параллелограмма по двум диагоналям и углу между этими диагоналями
- Площадь параллелограмма по вписанной окружности и стороне
- Площадь параллелограмма по вписанной окружности и углу между сторонами
- Определения
Свойства параллелограмма:
1. Противоположные стороны равны и параллельны
2. Противоположные углы равны
3. Точка пересечения диагоналей, делит их пополам
1. Формулы длины сторон через диагонали и угол между ними.
a , b – стороны параллелограмма
D – большая диагональ
d – меньшая диагональ
α , β – углы между диагоналями
Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), ( a , b ):
Формулы сторон параллелограмма через диагонали и сторону, ( a , b ):
Формулы сторон параллелограмма , ( a , b ):
2. Формулы длины сторон параллелограмма через высоту.
a , b – стороны параллелограмма
H b – высота на сторону b
H a – высота на сторону a
α , β – углы параллелограмма
Формулы сторон параллелограмма через высоту, ( a , b ):
3. Дополнительные, интересные формулы параллелограмма:
a , b – стороны параллелограмма
D – большая диагональ
d – меньшая диагональ
α – острый угол между диагоналями
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта статья на еще одну математическую тему. Мы расскажем, как правильно посчитать площадь параллелограмма. Эту тему подробно изучают только в 8-м классе. И это говорит, что она не такая простая.
Но для начала давайте все-таки напомним, какая фигура называется параллелограммом.
Параллелограмм – это разновидность четырехугольников, у которого противоположные стороны параллельны друг другу.
Классический параллелограмм выглядит вот так:
Впервые об этой фигуре подробно написал древнегреческий математик Евклид в своем известном произведении «Начала». Он же рассказал и о двух частных случаях параллелограмма, которые нам сегодня хорошо известны.
Это и прямоугольник, у которого противоположные стороны не только параллельны друг другу, но и пересекаются под прямым углом. И квадрат, у которого помимо параллельности противоположных сторон, все стороны еще и равны между собой.
И наконец, не лишним будет вспомнить, что подразумевается под термином «площадь».
Площадь геометрической фигуры – это размер плоскости, которая находится внутри сторон фигуры.
Ну а теперь объединим эти два понятия и расскажем, как надо считать площадь параллелограмма.
Формулы для расчета площади параллелограмма
Есть три основных формулы для вычисления площади параллелограмма:
- если известна длина стороны и высота, проведенная к ней;
- если известны длины сторон и углы между ними;
- если известны длины диагоналей и угол между ними.
Теперь о каждом из этих способов подробнее.
Как найти площадь параллелограмма, если известны сторона и высота
Возьмем для примера такой параллелограмм:
В нем указаны две высоты – BE и BF. Напомню, что высота — это отрезок, который опускается из вершины на противоположную сторону под прямым углом.
В данном случае площадь считается весьма просто. Надо всего лишь перемножить длину высоты и длину стороны, к которой она проведена.
И то же самое касается, если знать длины стороны DC и высоты BF. Тогда для вычисления площади достаточно их перемножить.
Кстати, у этой формулы есть весьма интересное доказательство. Так как у параллелограмма противоположные стороны параллельны и равны, то можно взять треугольник ABE и переставить его к стороне CD. Вот так это будет выглядеть:
В результате мы получим прямоугольник, у которого нам известны длины обеих сторон (высота параллелограмма превратилась в одну из сторон). А как известно, площадь прямоугольника равна произведению его сторон.
Формула площади параллелограмма, если известны стороны и угол
Площадь параллелограмма можно посчитать, если известны длины обеих его сторон и величина острого угла между ними.
Собственно, этот способ вытекает из предыдущего, Просто по исходным данным нужно вычислить высоту параллелограмма, а уже потом по ней посчитать площадь.
Согласно тригонометрии, синус острого угла в прямоугольнике равен отношению противоположного катета к гипотенузе. В нашем примере таким катетом является высота, а гипотенузой сторона «а». И получается:
Соответственно, чтобы посчитать значение высоты надо:
И наша конечная формула для расчета площади будет выглядеть следующим образом:
Как найти площадь параллелограмма через диагонали
Этот способ используется крайне редко, но знать его все равно нужно. Во всяком случае, на экзаменах у школьников такие примеры вполне могут встретиться.
В данном случае для вывода формулы используются весьма непростые математические вычисления. И мы не будем ими вас загружать. А просто покажем конечный результат:
Соответственно, здесь d1 и d2 – длины диагоналей, а y – острый угол между ними.
Вот и все, что мы хотели рассказать о вычислении площади параллелограмма.
Площадь параллелограмма, формулы и калькулятор для вычисления площади в режиме онлайн.
Для вычисления площади параллелограмма применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор для вычисления площади в режиме онлайн.
Площадь параллелограмма – это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.
Площадь параллелограмма по основанию и высоте параллелограмма
Площадь параллелограмма по стороне и высоте, опущенной на эту сторону
Площадь параллелограмма по двум сторонам и углу между ними
Площадь параллелограмма по двум диагоналям и углу между этими диагоналями
Площадь параллелограмма по вписанной окружности и стороне
Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.
Площадь параллелограмма по вписанной окружности и углу между сторонами
Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.
Определения
Параллелограмм – это геометрическая фигура, образованная четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.
Высота параллелограмма – это отрезок проведенный из вершины параллелограмма к противоположной стороне под углом в 90 градусов.
Некоторые свойства параллелограмма:
- Сумма углов параллелограмма равна 360 градусов
- Сумма углов, прилегающих к любой из сторон равна 180 градусов
- Противоположные стороны параллельны и имеют одинаковую длину
- Противолежащие углы равны
Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.
Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.