- Примеры решения
- Основные формулы
- Вывод формулы производной экспоненты
- Вывод формулы производной показательной функции
- Другие способы вывода производной экспоненты
- Пример
- Производные высших порядков от e в степени x
- Производные высших порядков показательной функции
- Калькулятор производных
- Производная функции
- Синтаксис описания формул
Определение |
Производная экспоненты равна самой же себе: $$ (e^x)’ = e^x $$ |
Если вместо $ x $ в экспоненте стоит сложная функция, то тогда производная экспоненты сложной функции находится по формуле: $$ (e^)’ = e^ cdot (f(x))’ = e^ cdot f'(x) $$
То есть оставляем изначальную функцию неизменной и умножаем на производную степени, стоящей в экспоненте.
Примеры решения
Так как дана сложная функция, то находим производную по правилу:
Для этого считаем $ f(x) = 2x $ и $ f'(x) = (2x)’ = 2 $.
Подставляем всё в формулу:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Пример 1 |
Найти производную экпоненты в степени $ 2x $: $$ y = e^ <2x>$$ |
Решение |
Ответ |
$$ y’ = 2e^ <2x>$$ |
Такая функция является сложной и взять от неё производную нужно по соответствующему правилу: $$ y’ = ( f(g(x)) )’ = f'(g(x)) cdot g'(x) $$
Записываем: $$ y’ = (cos e^x)’ = -sin e^x cdot (e^x)’ = -sin e^x cdot e^x = -e^x sin e^x $$
Пример 2 |
Найти производную экспоненты сложной функции: $$ y = cos e^x $$ |
Решение |
Ответ |
$$ y’ = -e^x sin e^x $$ |
Обратите внимание на то, что экспонента является единственной функцией на которую не оказывает влияния производная!
Основные формулы
Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1) ( e x )′ = e x .
Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a :
(2) .
Экспонента – это показательная функция, у которой основание степени равно числу e , которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.
Вывод формулы производной экспоненты
Рассмотрим экспоненту, e в степени x :
y = e x .
Эта функция определена для всех . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .
Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты:
(4) ;
Б) Свойство логарифма:
(5) ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6) .
Здесь – некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела:
(7) .
Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.
Сделаем подстановку . Тогда ; .
В силу непрерывности экспоненты,
.
Поэтому при , . В результате получаем:
.
Сделаем подстановку . Тогда . При , . И мы имеем:
.
Применим свойство логарифма (5):
. Тогда
.
Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.
Тем самым мы получили формулу (1) производной экспоненты.
Вывод формулы производной показательной функции
Теперь выведем формулу (2) производной показательной функции с основанием степени a . Мы считаем, что и . Тогда показательная функция
(8)
Определена для всех .
Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма.
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.
Тем самым, мы нашли производную показательной функции с произвольным основанием степени:
.
Другие способы вывода производной экспоненты
Пусть нам известна формула производной натурального логарифма:
(9) .
Тогда мы можем вывести формулу производной экспоненты, учитывая, что экспонента является обратной функцией к натуральному логарифму.
Перепишем формулу (9) в следующем виде:
,
где .
Переменные можно обозначать любыми буквами. Поменяем местами x и y :
(10) ,
где .
Теперь рассмотрим экспоненту ( e в степени x ):
(11) .
Применим формулу производной обратной функции:
(12) .
Обратной функцией к экспоненте является натуральный логарифм. Подставим значение производной натурального логарифма (10):
.
И, наконец, выразим y через x по формуле (11):
.
Формула доказана.
Теперь докажем формулу производной экспоненты, применяя формулу производной сложной функции. Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x :
(13) .
Производная от икса равна единице:
.
Применим формулу производной сложной функции:
.
Здесь . Подставим в (13):
.
Отсюда
.
Пример
Найти производные от e в степени 2x, e в степени 3x и e в степени nx. То есть найти производные функций
y = e 2x , y = e 3x и y = e nx .
Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = e nx . Затем подставим n = 2 и n = 3 . И из общей формулы найдем выражения для производных от e 2x , e 3x и e nx .
Итак, имеем исходную функцию
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.
Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Здесь мы подставили .
Итак, мы нашли:
.
Подставляем n = 2 и n = 3 .
Производные высших порядков от e в степени x
Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:
(14) .
Мы нашли ее производную первого порядка:
(1) .
Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.
Отсюда видно, что производная n-го порядка также равна исходной функции:
.
Производные высших порядков показательной функции
Теперь рассмотрим показательную функцию с основанием степени a :
.
Мы нашли ее производную первого порядка:
(15) .
Дифференцируя (15), получаем производные второго и третьего порядка:
;
.
Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.
Автор: Олег Одинцов . Опубликовано: 27-03-2017
Вычисляет производную заданной функции.
Данный калькулятор вычисляет производную функции и затем упрощает ее.
В поле функция введите математическое выражение с переменной x, в выражении используйте стандартные операции + сложение, – вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции. Полный синтаксис смотрите ниже.
Упрощение полученной производной может занять некоторое время, для сложных функций — весьма продолжительное. Если ждать до конца нет сил — нажмите кнопку остановить. У меня получался достаточно простой вариант уже после 10-15 секунд работы алгоритма упрощения.
Калькулятор производных
Производная функции
Синтаксис описания формул
В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, – — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.