Решение системы линейных уравнений методом простой итерации

Назначение сервиса . Онлайн-калькулятор предназначен для решения СЛАУ методом простой итерации в онлайн режиме (см. пример решения). Для проверки решения генерируется шаблон в Excel .

  • Решение онлайн
  • Видеоинструкция

Рассмотрим достаточные условия сходимости итерационной последовательности n>.
Практически, для применения метода итерации систему линейных уравнений удобно "погрузить" в одну из трёх следующих метрик:
(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: , т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы

Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).

Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:

Последовательные приближения будем искать по формулам:

Получаем:
x 1 =(-1.9022; 0.4889; 2.1456), x 2 =(-1.1720; 0.6315; 1.2389).
Для оценки погрешности в метрике ρ1 вычисляем коэффициент μ
.
Вычисляем погрешность:

При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.

Метод итераций для системы уравнений в Excel

Для вычисления точности epsilon .
Итерация №1: =ABS(B7)-ABS(B6);=ABS(C7)-ABS(C6);=ABS(D7)-ABS(D6)
Итерация №2: =ABS(B8)-ABS(B7);=ABS(C8)-ABS(C7);=ABS(D8)-ABS(D7)
Скачать шаблон решения.

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Читайте также:  Canon ef 35mm f 2 примеры фото

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = – a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) – x ( n ) ε 1 , где ε 1 = 1 – B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) – x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 – x 3 = 11 x 1 + 10 x 2 – x 3 = 10 – x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 – 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = – 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = – 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 – 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = – 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = – 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 – 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) – x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) – x ( 2 ) ∞ = 0 , 002 , x ( 4 ) – x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) – x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) – г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) – е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n – о е приближение, как в методе Якоби.

Читайте также:  Продажа воздушек б у на авито

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i – 1 x i – 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 – 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 – x 2 = 1 , 2 x 1 – 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = – 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = – 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) – 1 , 2 x 1 – 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 – 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 – 1 , x ( 1 ) = 5 9 , x ( 2 ) = – 15 – 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 – 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x – τ ( A x – b ) , τ – итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) – τ ( A x n – b ) .

Здесь B = E – τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x – максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) – оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n – λ m a x ) .

Метод простой итерации, называемый также методом последовательного приближения, – это математический алгоритм нахождения значения неизвестной величины путем постепенного ее уточнения. Суть этого метода в том, что, как видно из названия, постепенно выражая из начального приближения последующие, получают все более уточненные результаты. Этот метод используется для поиска значения переменной в заданной функции, а также при решении систем уравнений, как линейных, так и нелинейных.

Рассмотрим, как данный метод реализуется при решении СЛАУ. Метод простой итерации имеет следующий алгоритм:

1. Проверка выполнения условия сходимости в исходной матрице. Теорема о сходимости: если исходная матрица системы имеет диагональное преобладание (т.е, в каждой строке элементы главной диагонали должны быть больше по модулю, чем сумма элементов побочных диагоналей по модулю), то метод простых итераций – сходящийся.

2. Матрица исходной системы не всегда имеет диагональное преобладание. В таких случаях систему можно преобразовать. Уравнения, удовлетворяющие условию сходимости, оставляют нетронутыми, а с неудовлетворяющими составляют линейные комбинации, т.е. умножают, вычитают, складывают уравнения между собой до получения нужного результата.

Читайте также:  Сколько записей удовлетворяют условию

Если в полученной системе на главной диагонали находятся неудобные коэффициенты, то к обеим частям такого уравнения прибавляют слагаемые вида сi*xi, знаки которых должны совпадать со знаками диагональных элементов.

3. Преобразование полученной системы к нормальному виду:

Это можно сделать множеством способов, например, так: из первого уравнения выразить х1 через другие неизвестные, из второго- х2, из третьего- х3 и т.д. При этом используем формулы:

i= bi/aii
Следует снова убедиться, что полученная система нормального вида соответствует условию сходимости:

∑ (j=1) |αij|≤ 1, при этом i= 1,2. n

4. Начинаем применять, собственно, сам метод последовательных приближений.

x ( 0) – начальное приближение, выразим через него х ( 1) , далее через х ( 1) выразим х ( 2) . Общая формула а матричном виде выглядит так:

Вычисляем, пока не достигнем требуемой точности:

Итак, давайте разберем на практике метод простой итерации. Пример:
Решить СЛАУ:

4,5×1-1.7×2+3.5×3=2
3.1×1+2.3×2-1.1×3=1
1.8×1+2.5×2+4.7×3=4 с точностью ε=10 -3

Посмотрим, преобладают ли по модулю диагональные элементы.

Мы видим что условию сходимости удовлетворяет лишь третье уравнение. Первое и второе преобразуем, к первому уравнению прибавим второе:

Из третьего вычтем первое:

Мы преобразовали исходную систему в равноценную:

Теперь приведем систему к нормальному виду:

Проверяем сходимость итерационного процесса:

0.0789+0.3158=0,3947 ≤ 1
0.6429+0.2857=0.9286 ≤ 1
0.383+ 0.5319= 0.9149 ≤ 1 , т.е. условие выполняется.

0,3947
Начальное приближение х ( 0) = 0,4762
0,8511

Подставляем данные значения в уравнение нормального вида, получаем следующие значения:

0,08835
x (1) = 0,486793
0,446639

Подставляем новые значения, получаем:

0,215243
x (2) = 0,405396
0,558336

Продолжаем вычисления до того момента, пока не приблизимся к значениям, удовлетворяющим заданному условию.

Проверим правильность полученных результатов:

Результаты, полученные при подстановке найденных значений в исходные уравнения, полностью удовлетворяют условиям уравнения.

Как мы видим, метод простой итерации дает довольно точные результаты, однако для решения этого уравнения нам пришлось потратить много времени и проделать громоздкие вычисления.

Оцените статью
ПК Знаток
Добавить комментарий

Adblock detector