Поток воздуха в системном блоке

Обзор ПК » Системный блок

Правильное охлаждение системного блока

Ни для кого не секрет, что при работе компьютера все его электронные компоненты нагреваются. Некоторые элементы греются весьма ощутимо. Процессор, видеокарта, северные и южные мосты материнской платы – самые греющиеся элементы системного блока. Перегрев вообще опасен и приводит к аварийному отключению компьютера.

Поэтому основной проблемой всей электронной части вычислительной техники – это правильное охлаждение и эффективный отвод тепла. У подавляющего большинства компьютеров, как промышленных, так и домашних, для отвода тепла применяется воздушное охлаждение . Свою популярность она получила за счет свой простоты и дешевизны. Принцип такого типа охлаждения заключается в следующем. Все тепло от нагретых элементов отдается окружающему воздуху, а горячий воздух в свою очередь с помощью вентиляторов выводиться из корпуса системного блока. Для повышения теплоотдачи и эффективности охлаждения, наиболее нагревающиеся компоненты снабжаются медными или алюминиевыми радиаторами с установленными на них вентиляторами.

Но тот факт, что отвод тепла происходит за счет движения воздуха, совершенно не означает что, чем больше установлено вентиляторов, тем лучше будет охлаждение в целом. Несколько неправильно установленных вентиляторов могут навредить гораздо больше, а не решить проблему перегрева, когда один грамотно установленный вентилятор решит эту проблему очень эффективно.

Выбор дополнительных вентиляторов.

Прежде чем покупать и устанавливать дополнительные вентиляторы внимательно изучите свой компьютер. Откройте крышку корпуса, посчитайте и узнайте размеры установочных мест для дополнительных корпусных кулеров. Посмотрите внимательно на материнскую плату – какие разъемы для подключения дополнительных вентиляторов на ней имеются.

Вентиляторы нужно выбирать самого большого размера, который вам подойдет. У стандартных корпусов это размер 80×80мм. Но довольно часто (особенно в последнее время) в корпуса можно установить вентиляторы размером 92×92 и 120×120 мм. При одинаковых электрических характеристиках большой вентилятор будет работать гораздо тише.

Старайтесь покупать вентиляторы с большим количеством лопастей – они также тише. Обращайте внимание на наклейки – на них указан уровень шума. Если материнская плата имеет 4-х контактные разъемы для питания кулеров, то покупайте именно четырехпроводные вентиляторы. Они очень тихие, и диапазон автоматической регулировки оборотов у них довольно широкий.

Между вентиляторами получающие питание от блока питания через разъем Molex и работающие от материнской платы однозначно выбирайте второй вариант.

В продаже имеются вентиляторы на настоящих шарикоподшипниках – это наилучший вариант в плане долговечности.

Установка дополнительных вентиляторов.

Давайте рассмотрим основные моменты правильной установки корпусных вентиляторов для большинства системных блоков. Здесь мы приведем советы именно для стандартных корпусов, так как у нестандартных расположение вентиляторов столь разнообразно, что описывать их не имеет смысла – все индивидуально. Более того у нестандартных корпусов размеры вентиляторов могут достигать и 30см в диаметре.

В корпусе нет дополнительных вентиляторов.

Это стандартная компоновка для практически всех компьютеров продаваемых в магазинах. Весь горячий воздух поднимается в верхнюю часть компьютера и за счет вентилятора в блоке питания выходит наружу.

Большим недостатком такого вида охлаждения является то, что весь нагретый воздух проходит через блок питания, нагревая при этом его еще сильнее. И поэтому именно блок питания у таких компьютеров ломается чаще всего. Также весь холодный воздух всасывается не управляемо, а со всех щелей корпуса, что только уменьшает эффективность теплообмена. Еще одним недостатком является разреженность воздуха, получаемая при таком типе охлаждения, что ведет к скапливанию пыли внутри корпуса. Но все же, это в любом случае лучше, чем неправильная установка дополнительных вентиляторов.

Один вентилятор на задней стенке корпуса.

Такой способ применяется больше от безвыходности, так как в корпусе имеется лишь одно место для установки дополнительного кулера – на задней стенке под блоком питания. Для того чтобы уменьшить количество горячего воздуха проходящего через блок питания устанавливают один вентилятор работающий на «выдув» из корпуса.

Большая часть нагретого воздуха от материнской платы, процессора, видеокарты, жестких дисков выходит через дополнительный вентилятор. А блок питания при этом греется значительно меньше. Также общий поток движущегося воздуха увеличивается. Но разреженность повышается, поэтому пыль скапливаться будет еще сильнее.

Дополнительный фронтальный вентилятор в корпусе.

Когда в корпусе имеется лишь одно посадочное место на лицевой части корпуса, либо нет возможности включения сразу двух вентиляторов (некуда подключать), то это самый идеальный вариант для вас. Необходимо поставить на «вдув» один вентилятор на фронтальной части корпуса.

Вентилятор нужно установить напротив жестких дисков. А правильнее будет написать, что винчестеры нужно поставить напротив вентилятора. Так холодный входящий воздух будет сразу их обдувать. Такая установка гораздо эффективнее, чем предыдущая. Создается направленный поток воздуха. Уменьшается разрежение внутри компьютера – пыль не задерживается. При питании дополнительных кулеров от материнской платы, снижается общий шум, так как снижаются обороты вентиляторов.

Установка двух вентиляторов в корпус.

Самый эффективный метод установки вентиляторов для дополнительного охлаждения системного блока. На фронтальной стенке корпуса устанавливается вентилятор на «вдув», а на задней стенке – на «выдув»:

Создается мощный постоянный воздушный и направленный поток. Блок питания работает без перегревов, так как нагретый воздух выводиться вентилятором, установленным под ним. Если установлен блок питания с регулируемыми оборотами вращения вентилятора, то общий шум заметно снизиться, и что более важно давление внутри корпуса выровнится. Пыль не будет оседать.

Неправильная установка вентиляторов.

Ниже приведем примеры неприемлемой установки дополнительных кулеров в корпус ПК.

Один задний вентилятор установлен на «вдув».

Создается замкнутое воздушное кольцо между блоком питания и дополнительным вентилятором. Часть горячего воздуха из блока питания тут же всасывается обратно внутрь. При этом в нижней части системного блока движения воздуха нет, а следовательно охлаждение неэффективное.

Один фронтальный вентилятор установлен на «выдув».

Если вы поставите только один передний кулер, и он будет работать на выдув, то в итоге вы получаете очень разряженное давление внутри корпуса, и малоэффективное охлаждение компьютера. Причем из-за пониженного давления сами вентиляторы будут перегружены, так как им придется преодолевать обратное давление воздуха. Компоненты компьютера будут нагреваться, что приводит к повышенному шуму работы, так как скорости вращения вентиляторов увеличатся.

Задний вентилятор на «вдув», а фронтальный – на «выдув».

Создается воздушное короткое замыкание между блоком питания и задним вентилятором. Воздух в районе центрального процессора работает по кругу.

Передний же вентилятор пытается против естественного конвекционного подъема «опустить» горячий воздух, работая под повышенной нагрузкой и создавая разрежение в корпусе.

Два дополнительных кулера стоят на «вдув».

Создается воздушное короткое замыкание в верхней части корпуса.

При этом эффект от входящего холодного воздуха ощущается только для винчестеров, так как дальше он попадает на встречный поток от заднего вентилятора. Создается избыточное давление внутри корпуса, что усложняет работу дополнительных вентиляторов.

Два дополнительных кулера работают на «выдув».

Самый тяжелый режим работы системы охлаждения.

Внутри корпуса пониженное давление воздуха, все корпусные вентиляторы и внутри блока питания работают под обратным давлением всасывания. Внутри воздуха нет достаточного движения воздуха, а, следовательно, все компоненты работают перегреваясь.

Вот в принципе и все основные моменты, которые вам помогут в организации правильной системы вентиляции своего персонального компьютера. Если на боковой крышке корпуса есть специальная пластиковая гофра – используйте её для подачи холодного воздуха к центральному процессору. Все остальные вопросы установки решаются в зависимости от структуры корпуса.

Эта работа была прислана на наш "бессрочный" конкурс статей и автор получил приз – видеокарту NVIDIA GeForce FX 5700Ultra.

Эта статья посвящается всем тем, кто в данный момент использует традиционное воздушное охлаждение.

реклама

Все это было бы замечательно, если бы делалось грамотно. Как-то раз друг сказал мне, что у него установлено аж пять корпусных вентиляторов. Я его с этим поздравил, а когда узнал, как они расположены и куда гоняют теплый воздух, обругал его последними словами. И тогда же мне в голову пришла мысль, что и к кажущейся простой задаче размещения вентиляторов неплохо бы подойти с научной точки зрения.

Здесь я хочу рассказать о решении схожей задачи. Для поиска оптимальной конфигурации вентиляторов совсем необязательно рассчитывать температурный режим работы всех комплектующих. Ведь процессоры, видеокарты, винчестеры, память у всех разные, имеют разную тепловую мощность, то есть рассеивают разное количество тепла за одинаковое время. Главное – убедиться в отсутствии вихрей, в том, что горячий воздух быстро покидает корпус, а для поступления холодного не создается никаких препятствий.

Изначально работа называлась "Особенности задач принудительной конвекции в системе физического моделирования ANSYS на примере моделирования конфигурации воздушных потоков внутри корпуса форм-фактора ATX системного блока персонального компьютера", была представлена мной на кафедре, и (хвастаюсь!) была замечена. Вот я и решил отдать эту статью на суд широкого круга читателей, предварительно переработав ее. Тем, кому интересно, "откуда все это взялось", советую все же не пропускать следующей части.

Читайте также:  Состояние мобильной сети отключено как включить

Немного физики и математики

реклама

Поставленная задача формулируется в основных уравнениях гидродинамики (Эйлера, Бернулли, непрерывности, Навье-Стокса). Но опять таки, из-за сложности модели, такую задачу невозможно решить аналитически (методами современной математики).

Само собой напрашивается применение численных методов решения. Для реализации я выбрал среду физического моделирования ANSYS, использующую метод конечных элементов (МКЭ). Схему применения МКЭ можно кратко описать следующими пунктами

  1. задача формулируется на языке дифференциальных уравнений
  2. дифференциальные уравнения заменяются соответствующими функционалами, задача сводится к поиску минимумов функционалов
  3. вся модель разбивается на элементы (так называемой конечноэлементной сеткой)
  4. для каждого элемента выбираются пробные функции, чаще всего полиномы, и для них записываются граничные условия (например, известные температуры, скорости, давления в модели), функционал представляется как сумма интегралов пробных функций по элементам
  5. путем решения СЛАУ (систем линейных алгебраических уравнений) ищутся минимумы функций
  6. результатом считается совокупность результатов вычислений для всех элементов.

Для решения задач гидродинамики в ANSYS применяется итерационный метод. После решения задачи по приведенному выше алгоритму (пункты 4-6) результаты сохраняются и передаются в качестве граничных условий на следующий шаг. Так продолжается до тех пор, пока либо не будет достигнута нужная сходимость решения (т.е. разность результатов по температуре, скорости или давлению на соседних шагах меньше заданного числа), либо не исчерпается лимит итераций.

В геометрическую модель были включены стенки корпуса и основные располагающиеся внутри крупногабаритные детали. Все размеры были перенесены в модель путем прямых измерений с помощью рулетки из стандартного системного блока, соответствующего типоразмеру ATX: Был рассмотрен Inwin J535 с корпусными вентиляторами в предусмотренных производителем местах, стандартный блок питания с одним вентилятором, Radeon 9000 с пассивным охлаждением, боксовый кулер от Intel, одна планка памяти. Так как в прототипе геометрической модели для подключения накопителя на жестких магнитных дисках использовался интерфейс Serial ATA (характеризующийся малыми размерами соединительного кабеля) вкупе с грамотным расположением IDE шлейфов для подключения приводов чтения/записи компакт дисков, эти и другие провода не учитывались при построении геометрической модели.

В рассмотрение были включены следующие элементы, ограничивающие распространение воздушного потока:

  • стенки корпуса (Walls)
  • накопитель на жестких магнитных дисках (HDD)
  • два устройства чтения/записи компакт дисков (CDROM)
  • дисковод для гибких дискет (Floppy Drive)
  • видеокарта (Video)
  • микросхема памяти (Memory)
  • стенки блока питания (Power)

В рассмотрение были включены следующие элементы для задания температурных нагрузок:

  • центральный процессор с радиатором (СPU)
  • графический процессор с радиатором (GPU)
  • накопитель на жестких магнитных дисках (HDD)
  • микросхемы памяти (Memory)

В рассмотрение были включены следующие элементы, определяющие скорость воздушного потока:

  • вентилятор процессора (CPUFan)
  • вентилятор блока питания (PowerFan)
  • вентилятор на передней стенке корпуса (SysFanFront)
  • вентилятор на задней стенке корпуса (SysFanBack)

На рисунках приведены проекции различных частей трехмерной модели на одну плоскость проекции, полученные средствами ANSYS:

Внутренние детали модели

Внешние детали модели

Внутренние детали модели, вид сбоку

Таким образом, геометрия модели одинакова для всех решаемых задач.

Пусть скорости воздушных потоков на вентиляторах одинаковы по величине во всех случаях, а направление потока воздуха, создаваемого процессорным вентилятором, постоянно и по направлению. Рассмотренные варианты установки вентиляторов с условными обозначениями приведены ниже.

  1. вдув/ноль – передний вентилятор работает на вдув, задний отсутствует, вентилятор блока питания работает на выдув
  2. вдув/выдув – передний вентилятор работает на вдув, задний и вентилятор блока питания работает на выдув
  3. вдув/вдув – передний и задний вентиляторы работают на вдув, вентилятор блока питания работает на выдув
  4. ноль/вдув – передний вентилятор отсутствует, задний вентилятор работает на вдув, вентилятор блока питания на выдув
  5. обратный ток – передний вентилятор работает на выдув, задний и вентилятор блока питания работают на вдув

реклама

Численное решение гидродинамической и температурной задач предполагает предварительное задание характерных свойств потока жидкости или газа, как, например, ламинарный или турбулентный характер течения и наличие или отсутствие сжимаемости потока. Также необходимо знать граничные условия: скорости/давления на входных и выходных отверстиях модели. Для получения установившейся картины (т.к. колебания скоростей и температур незначительны) на деталях модели достаточно задать постоянные температуры.

Начальную скорость потока воздуха, создаваемого вентиляторами, можно определить, исходя из их паспортных данных. Для всех вентиляторов известными являются объем пропускаемого воздуха за единицу времени и площадь сечения. Пример для расчета скорости воздуха, проходящего через вентилятор радиуса r = 0.035 м и пропускающего v = 20 кубических футов воздуха в минуту:

При взаимодействии потока воздуха с препятствиями произвольной конфигурации, каковыми можно считать установленные внутри системного блока детали, логично ожидать возникновения турбулентных течений. Это можно подтвердить, оценив порядок коэффициента Рейнольдса для данного потока воздуха и препятствия размером порядка 0.1 м. Для потока воздуха с характерными скоростью порядка 1 м/с, плотностью 1 кг/м³ и кинематической вязкостью 10 -5 м²/с коэффициент Рейнольдса составит

реклама

Известно, что при порядке коэффициента Рейнольдса, большем 1, силы вязкости уже не способны гасить возникающие при обтекании произвольные составляющие скорости потока, из чего следует турбулентный характер потока.

Этот параграф могут пропустить те, кто не собирается сейчас же начать заняться моделированием 😉

В системе физического моделирования ANSYS существует два основных метода создания модели и обработки результатов. Это написание программы на встроенном языке APDL и редактирование модели вручную при помощи графического интерфейса пользователя (GUI, Graphics User Interface). В связи с тем, что геометрическая модель, конечно-элементная сетка, а также граничные условия могут подвергаться изменениям в процессе реализации, то предпочтительней использовать для этой части моделирования, равно как и для задания различных опций решения, программный метод. Для обработки результатов, в частности при построении графиков, удобно, напротив, прибегнуть к GUI.

реклама

Построение геометрии модели должно осуществляться с учетом того, что расположение деталей модели остается неизменным. Для задания их положения в пространстве в программе используются константы.

Для упрощения построения конечноэлементной сетки (а также возможности построения упорядоченной сетки) весь объем модели разбивается на равновеликие элементы, все активные части модели при этом описываются узлами. После задания определения принадлежности узлов к частям модели проблема задания нагрузок, таких как скорости, давления и температуры, легко решается.

Характерные сложности реализации

Так как задача трехмерна и имеет сложную геометрию, решение сходится по всем параметрам до порядка 10 -2 за несколько сотен итераций. При разбиении модели даже на десятки конечных элементов по каждому измерению, выполнение этого необходимого количества итераций требует от получаса до часа времени на Celeron 2.0@2.6ГГц (ANSYS – одно из немногих приложений, которое реально поддерживает многопроцессорность, так что с благодарностью приму во временное пользование или в дар пень HT 🙂 ). При создании более мелкого разбиения время решения резко увеличивается. Например, при реформировании сетки всего в 3 раза, время подсчета одной задачи увеличится в 27 раз, и составит примерно сутки на одну задачу. По причине отсутствия на момент реализации более мощных вычислительных ресурсов конечноэлементная сетка модели недостаточно подробна, хотя и позволяет описать все части модели и решить поставленную задачу.

реклама

В этом параграфе приведены сравнительные результаты проведенного анализа для двух различных конфигураций установленных внутри корпуса вентиляторов, а также дана относительная оценка их эффективности. Для остальных случаев приведены краткие характеристики на основе полученных результатов.

Для визуализации результатов я использовал три различных способа:

  1. сечение модели с контурным цветовым графиком температуры или скорости воздуха
  2. картина распределения линий тока воздуха, цветом показана температура (картина перемещения заранее выбранных элементарных объемов воздуха)
  3. анимация течения воздуха вдоль линий тока

Дабы не загромождать статью, подробно рассмотрю результаты только для двух случаев.

Сравнительный анализ систем охлаждения, работающих на вдув/выдув и вдув/вдув.

реклама

вдув/вдув, линии тока, вид сбоку

Из графиков видно, что в первом случае поток имеет меньше завихрений, более устойчив по конфигурации.

вдув/выдув, линии тока

вдув/вдув, линии тока

реклама

вдув/выдув, температура в поперечном сечении через ЦП

вдув/вдув, температура в поперечном сечении через ЦП

вдув/выдув, температура в продольном сечении через ЦП

вдув/вдув, температура в продольном сечении через ЦП

реклама

Так же привожу ссылки на avi-файлы с анимацией течения соответственно для случаев вдув/выдув (VDUV_VIDUV.ZIP, 527КБ) и вдув/вдув (VDUV_VDUV.ZIP, 673КБ). Для более удобного просмотра нужно включить повтор при воспроизведении анимации.

Краткая характеристика результатов для случая вдув/ноль

Одна из наиболее удачных конфигураций вентиляторов. По своим характеристикам распределений и температур практически не отличается от конфигурации вдув/выдув, используя на один вентилятор меньше (эффективно применяться может только при отсутствии других вытяжных отверстий). Для случаев вдув/ноль и вдув/выдув сравнительные контурные графики по сечениям можно посмотреть здесь (VDUV_NO-VS-VDUV_VIDUV.ZIP 1.3 МБ).

Читайте также:  1С кнопка в табличной части

Краткая характеристика результатов для случая ноль/вдув

Поток воздуха, поступающий через вентилятор, расположенный на задней стенке, практически не участвует в отводе тепла с центрального процессора и видеокарты (схема вверху). Это негативно сказывается на образовании зоны слабой конвекции вблизи микросхемы памяти и центрального процессора. При этом установленный на процессоре вентилятор (схема внизу) захватывает и повторно пропускает через себя часть нагретого воздуха. Такая установка вентиляторов одна из самых неэффективных, хотя из несколько симметричной геометрии можно было ожидать конфигурации потоков как в случае вдув/ноль.

Краткая характеристика результатов для случая обратного тока

Так же, как и в предыдущем случае, основной поток воздуха практически не участвует в теплообмене с наиболее нагретыми частями модели. Очевидным недостатком применения такой компоновки вентиляторов является еще и то, что в этом случае принудительная конвекция происходит против направления небольшой по величине, но имеющей место естественной конвекции. Такая система расположения не может считаться самой эффективной.

Вместо выводов. Заключение

При составлении заключения к оригиналу этой статьи, я написал следующее:

Благодаря использованию функций обработки и представления результатов можно сделать вывод об относительной эффективности по охлаждению различных вариантов установки вентиляторов в корпусе компьютера. Самой эффективной из рассмотренных конфигураций является следующая: вентилятор на передней стенке корпуса работает на вдув, вентилятор на задней стенке работает на выдув.

Несмотря на этот результат нельзя не признать, что корпуса форм-фактора ATX, хотя и будут скорее всего продолжать использоваться в ближайшие годы, не смогут решить проблему независимого охлаждения комплектующих, т.е. осуществить обдув каждого источника тепла холодным воздухом. Поэтому на сегодняшний день системы воздушного охлаждения проигрывают жидкостным аналогам. Возможно, ситуацию помогут исправить корпуса форм-фактора BTX, широкое внедрение которых на рынок планируется уже в 2005 году.

Сейчас же хочу прибавить несколько замечаний общего характера.

Практическая ценность от приведенных выше результатов для отдельно взятого пользователя, по большому счету, стремится к нулю. Просто перебрать все варианты вентиляторов, блоухолов, воздуховодов в рамках одной статьи нереально. Также некоторые из рассмотренных конфигураций вентиляторов были заведомо неверны. Главное совсем не это.

Важно то, что с помощью приведенного выше метода можно с очень хорошей точностью предсказать, какая модификация охлаждения принесет реальную пользу, а какая нет. Не сомневаюсь в том, что те, кто разрабатывает Термалтейки и Чифтеки, пользуются схожими инструментами. Метод универсален и относительно прост.

Не секрет, что тепловыделение комплектующих растет, растет и шум, создаваемый воздушным охлаждением. Возможно, ситуацию изменит массово выпускаемое жидкостное или воздушно-жидкостное охлаждение, как в новом маке G5 (хотя вряд ли системные администраторы согласятся иметь такие офисные машины, и чтобы убедить их в надежности, потребуется не один год испытаний). Некоторые возлагают надежды на новый стандарт BTX и усовершенствованное воздушное охлаждение. Может быть, будущее за гибридом холодильника с системным блоком, известным как "фреонка", или за TNN-500A (который, по моему мнению, представляет все же тупиковую ветвь охлаждения).

Все это только планы. Сегодня преобладающее число пользователей (в том числе оверклокеров) использует воздушное охлаждение в форм-факторе ATX, и так будет ближайшие года три точно. Я не предлагаю никому завтра же начинать моделировать и проверять новую модификацию своего корпуса. Но прошу всех, кто знает качественные модификации охлаждения ATX, а также просто всех, кому есть что сказать, писать в форум, на почту или в ICQ. От ваших пожеланий зависит, выйдет ли полный сравнительный обзор температурных режимов, обеспечиваемых ATX, его модификациями и BTX, и каким он будет.

Дмитрий Лазаренко aka xPeltier
xpeltier@yandex.ru
ICQ: 76357386

Ждём Ваших комментариев в специально созданной ветке конференции.

Сергей Плотников

31 января 2018

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция «Как собрать компьютер», в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

⇡#Современный системный блок

В интернете можно найти большое количество статей про организацию охлаждения в системном блоке, но многие из них написаны в те далекие времена, когда стандартными (типовыми, классическими и так далее) считались компьютеры с верхним расположением блока питания и большим количеством корзин для 3,5- и 5,25-дюймовых устройств. Что ж, за последнее время стандарты заметно изменились. Данный факт наглядно показан в статье «Компьютер, который вы могли собрать, но пожалели денег, — лучшие корпуса, БП и охлаждение 2017 года». Тенденции, если я ничего не путаю, по преображению стандартных Tower-корпусов начали прослеживаться еще в 2014 году, но только теперь они стали массовым явлением.

Пример сборки в корпусе Thermaltake Versa N27

Так, компьютерный корпус с посадочным местом под установку блока питания в верхней части в 2018 году можно смело называть диковинкой. Обычно такие устройства расположены в ценовом диапазоне до 2 000 рублей. В большинстве остальных Tower-корпусов PSU крепится снизу, к тому же в последнее время его вовсе прячут за декоративной заслонкой. Туда же, под импровизированную шторку, иногда помещают корзину для жестких дисков. Например, в последних пяти обзорах на момент написания статьи на нашем сайте были рассмотрены именно такие модели.

На мой взгляд, в первую очередь производители корпусов поступают таким образом исходя из эстетических соображений, потому что применение забрала, скрывающего блок питания, неиспользуемые провода и HDD, при наличии окошка на боковой стенке делает систему заметно симпатичнее. К тому же в ПК с таким корпусом можно смело устанавливать немодульный блок питания, так как незадействованные кабели никак не скажутся на внешнем виде. А еще шторка четко отделяет блок питания от остальных комплектующих, что, в свою очередь, хорошо сказывается на его охлаждении. Как видите, мы наблюдаем сплошные плюсы.

Пример сборки в корпусе Thermaltake Core X31

Размеры Tower-корпусов за последнее время изменились несильно, однако, несомненно, внутренняя «перестройка» была спровоцирована в том числе и сменой приоритетов пользователей. Люди практически не пользуются оптическими приводами, а потому необходимости в 5,25-дюймовых отсеках в корпусе нет. В системные блоки все чаще устанавливают компактные твердотельные накопители — SSD форм-фактора M.2 вовсе не нуждаются в каких-либо корзинах. С учетом большой популярности онлайн-сервисов и облачных хранилищ нет необходимости устанавливать в ПК большое количество жестких дисков, поэтому один-два винчестера вполне можно закрепить на заградительной стенке корпуса. Наконец, все больше производителей железа выпускают яркие, эффектные комплектующие с подсветкой. Такая тенденция может не нравиться, она может бесить и раздражать, однако все больше производителей корпусов выпускают все больше оригинальных красочных моделей с окошком на боковой стенке.

Все перечисленные выше конструктивные особенности новой «классики» позволили, во-первых, аккуратно укладывать провода и шлейфы, что способствует лучшей циркуляции воздуха внутри корпуса и меньшему накоплению пыли. Во-вторых, отсутствие корзин для 3,5- и 5,25-дюймовых устройств увеличивает свободное пространство внутри корпуса. По этой же причине мы можем установить большее число вентиляторов, которые будут работать эффективнее. Собственно говоря, именно это и наблюдается в современных устройствах, так как даже в корпусах форм-фактора mini-Tower, поддерживающих установку только mini-ITX-материнских плат, можно закрепить на передней панели минимум два 120-мм вентилятора. Корпуса midi-Tower и full-Tower позволяют инсталлировать три, иногда четыре вентилятора на передней панели и столько же — на верхней стенке.

Примитивная иллюстрация перемещения воздушных потоков в современном Tower-корпусе

На фотографии выше показана сборка в midi-Tower-корпусе Thermaltake Core X31. Это устройство позволяет установить три вентилятора (как 120-мм, так и 140-мм) спереди, три вентилятора сверху, один снизу и один сзади. Следовательно, сборщик может полностью управлять воздушными потоками, наблюдаемыми в системном блоке. С учетом традиционной установки комплектующих и стандартного расположения самого корпуса (на столе рядом с монитором и пользователем; под столом) принято, что вентиляторы, установленные на передней и нижней панелях, засасывают воздух, а «карлсоны», закрепленные на верхней и задней стенках, выдувают его. Иллюстрация, приведенная выше, является примитивной, потому что, на самом деле, вариантов забора и выдува воздуха в корпусах может быть масса. Так, потоки «пробираются» сквозь отверстия в заглушках PCI Express, через прокладки на заградительной стенке, а также через крошечные щели в стыках сопряженных панелей.

Нагрев комплектующих в корпусе при отсутствии вентиляторов

Для большей наглядности приведу несколько снимков, сделанных промышленным тепловизором. Отчетливо видно, что при отсутствии корпусных вентиляторов нагретый воздух занимает большую часть внутреннего объема корпуса. В системе применяется процессорный кулер башенного типа, поэтому какой-никакой выдув все же присутствует. Огромную роль здесь играет общий объем Thermaltake Core X31, так как в более компактном корпусе температуры оказались бы заметно выше — это очевидный факт.

При установке одного вентилятора, работающего на вдув, на переднюю панель и одного вентилятора, работающего на выдув, на заднюю системам охлаждения процессора и видеокарты становится заметно легче выполнять свои непосредственные обязанности. Так, подсистема питания графического ускорителя теперь холоднее на 10 градусов Цельсия. Остальным компонентам блока тоже стало заметно комфортнее.

Нагрев комплектующих в корпусе при работе всех вентиляторов

Одного этого примера уже достаточно для констатации очевидной вещи: любая игровая система в Tower-корпусе должна оснащаться вентиляторами. Осталось только определить верное их количество, а также разобраться с правильным расположением этих элементов ПК. Чем мы и займемся далее.

⇡#История одного игрового ПК

Напомню, все эксперименты проводились с типовым игровым системным блоком, собранным в корпусе форм-фактора Midi-Tower. Использование других устройств может повлиять – и, уверен, повлияет – на итоговые результаты. В некоторых случаях — незначительно, в других — кардинально. По мере повествования я постараюсь осветить те или иные моменты, основываясь в том числе и на собственном опыте.

Для проведения этого эксперимента я обратился за помощью к компаниям MSI и Thermaltake, которые любезно предоставили часть комплектующих на тест. Система получилась следующей:

  • Центральный процессор Intel Core i7-8700K, 6 ядер и 12 потоков, 3,7 (4,7) ГГц.
  • Процессорное охлаждение Thermaltake Frio Silent 12.
  • Оперативная память Corsair CMK16GX4M2A2666C16, 16 Гбайт, DDR4-2666.
  • Материнская плата MSI Z370 GAMING M5.
  • Накопители Western Digital WD10EFRX, Western Digital WDS100T1B0A и Team Group T-FORCE CARDEA.
  • Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, 11 Гбайт GDDR5X.
  • Корпус Thermaltake Core X31.
  • Корпусные вентиляторы Thermaltake Riing Plus 12 RGB Radiator Fan TT Premium Edition, два комплекта по три штуки.
  • Блок питания Thermaltake Smart Pro RGB 750W Bronze, 750 Вт.

По факту мы имеем дело с одним из вариантов сборки, которую я называю максимальной. Она, а также другие системы рассматриваются в рубрике «Компьютер месяца».

Intel Core i7-8700K

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится здесь, поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться здесь.

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения состоит из шести массивных теплотрубок, а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться в этой статье. А еще на нашем сайте выходил обзор MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

MSI Z370 GAMING M5

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, обзор которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Оцените статью
ПК Знаток
Добавить комментарий

Adblock detector