Как отключить защиту на блоке питания компьютера

Сменить шрифт на обычный короткая ссылка на новость:
следующая новость | предыдущая новость

Когда мы включаем блок питания, напряжения на выходе не сразу достигают нужного значения, а примерно через 0.02 секунды, и чтобы исключить подачу пониженного напряжения на компоненты ПК, существует специальный сигнал «power good», также иногда называемый «PWR_OK» или просто «PG», который подаётся, когда напряжения на выходах +12В, +5В и +3.3В достигают диапазона корректных значений. Для подачи этого сигнала выделена специальная линия на ATX разъёме питания, подключаемого к материнской плате (№8, серый провод).

Ещё одним потребителем этого сигнала является схема защиты от подачи пониженного напряжения (UVP) внутри БП , о которой ещё пойдёт речь – если она будет активна с момента включения на БП, то она просто не даст компьютеру включиться, сразу отключая БП, поскольку напряжения будут заведомо ниже номинальных. Поэтому эта схема включается только с подачей сигнала Power Good.

Этот сигнал подаётся схемой мониторинга или ШИМ-контроллером (широтно-импульсная модуляция, применяемая во всех современных импульсных БП, из-за чего они и получили своё название, английская аббревиатура – PWM, знакомая по современным кулерам – для управления их частотой вращения подаваемый на них ток модулируется подобным образом.)

Диаграмма подачи сигнала Power Good согласно спецификации ATX12V.
VAC – входящее переменное напряжение, PS_ON# – сигнал "power on", который подаётся при нажатии кнопки включения на системном блоке."O/P" – сокращение для "operating point", т.е. рабочее значение. И PWR_OK – это и есть сигнал Power Good. T1 меньше чем 500 мс, T2 находится между 0.1 мс и 20 мс, T3 находится между 100 мс and 500 мс, T4 меньше или равно 10 мс, T5 больше или равно 16 мс и T6 больше или равно 1 мс.

Защита в обоих случаях реализована при помощи одной и той же схемы, мониторящей выходные напряжения +12В, +5В и 3.3В и отключающей БП в случае если одно из них окажется выше (OVP – Over Voltage Protection) или ниже (UVP – Under Voltage Protection) определённого значения, которое также называют «точкой срабатывания». Это основные типы защиты, которые в настоящее время присутствуют фактически во всех блоках питания, более того, стандарт ATX12V требует наличия OVP.

Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:

Выход Минимум Обычно Максимум +12 V 13.4 V 15.0 V 15.6 V +5 V 5.74 V 6.3 V 7.0 V +3.3 V 3.76 V 4.2 V 4.3 V

Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.

Такой блок питания будет длительное время выдавать , допустим, 15В вместо 12В без срабатывания защиты, что может привести к выходу из строя компонентов ПК.

С другой стороны, стандарт ATX12V чётко оговаривает, что выходные напряжения не должны отклоняться более чем на 5% от номинального значения, но при этом OVP может быть конфигурирована производителем БП на срабатывание при отклонении в 30% по линиям +12В и +3.3В и в 40% – по линии +5В.

Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.

Как пример возьмём популярную микросхему мониторинга PS223, которая используется в некоторых блоках питания, которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:

Выход Минимум Обычно Максимум
+12 V 13.1 V 13.8 V 14.5 V
+5 V 5.7 V 6.1 V 6.5 V
+3.3 V 3.7 V 3.9 V 4.1 V

Выход Минимум Обычно Максимум
+12 V 8.5 V 9.0 V 9.5 V
+5 V 3.3 V 3.5 V 3.7 V
+3.3 V 2.0 V 2.2 V 2.4 V

Другие микросхемы предоставляют другой набор точек срабатывания.

И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.

В случае с этой технологией (англоязычная аббревиатура OCP – Over Current Protection) есть один вопрос, который следовало бы рассмотреть более подробно. По международному стандарту IEC 60950-1 в компьютерном оборудовании ни по одному проводнику не должно передаваться более 240 Вольт-ампер, что в случае с постоянным током даёт 240 Ватт. Спецификация ATX12V включает в себя требование о защите от превышения по току во всех цепях. В случае с наиболее нагруженной цепью 12Вольт мы получаем максимально допустимый ток в 20Ампер. Естественно, такое ограничение не позволяет изготовить БП мощностью более 300Ватт, и для того, чтобы его обойти, выходную цепь +12В стали разбивать на две или более линий, каждая из которых имела собственную схему защиты от перегрузки по току. Соответственно, все выводы БП, имеющие +12В контакты, разбиваются на несколько групп по количеству линий, в некоторых случая на них даже наносится цветовая маркировка, чтобы адекватно распределять нагрузку по линиям.

Читайте также:  B7s g10 by ar001870 схема

Однако во многих дешёвых БП с заявленными двумя линиями +12В на практике используется только одна схема защиты по току, а все +12В провода внутри подключаются к одному выходу. Для того, чтобы реализовать адекватную работу такой схемы, защита от нагрузки по току срабатывает не при 20А , а при, например, 40А, и ограничение максимального тока по одному проводу достигается тем, что в реальной системе нагрузка в +12В всегда распределена по нескольким потребителям и ещё большему количеству проводов.

Более того, иногда разобраться, используется ли в данном конкретном БП отдельная защита по току для каждой линии +12В можно, только разобрав его и посмотрев на количество и подключение шунтов, используемых для измерения силы тока (в некоторых случаях количество шунтов может превышать количество линий, поскольку для измерения силы тока на одной линии могут использоваться несколько шунтов).

Различные типы шунтов для измерения силы тока.

Ещё одним интересным моментом является то, что в отличие от защиты от повышенного/пониженного напряжения допустимый уровень тока регулируется производителем БП, путём подпаивания резисторов того или иного номинала к выходам управляющей микросхемы. А на дешёвых БП, несмотря на требования стандарта ATX12V, эта защита может быть установлена только на линии +3.3В и +5В, либо отсутствовать вовсе.

Как следует из её названия (OTP – Over Temperature Protection), защита от перегрева выключает блок питания, если температура внутри его корпуса достигает определённого значения. Ей оснащены далеко не все блоки питания.

В блоках питания можно увидеть термистор, прикреплённый к радиатору (хотя в некоторых БП он может быть припаян прямо к печатной плате). Этот термистор соединён с цепью управления скоростью вращения вентилятора, он не используется для защиты от перегрева. В БП, оборудованных защитой от перегрева, обычно используется два термистора – один для управления вентилятором, другой, собственно для защиты от перегрева.

В качестве англоязычного названия встречаются аббревиатуры OPP – Over Power Protection или OLP – Over Load Protection )Это опциональный вид защиты, реализуемый при помощи PWM-контроллера или микросхемы мониторинга, а на БП с активным PFC – контроллером PFC. В любом случае, мониторингу подвергается количество тока, который БП потребляет из электрической сети. Если его величина превосходит определённое значение, БП отключается.

Защита от короткого замыкания (SCP – Short Circuit Protection) – вероятно, самая старая из подобных технологий, потому что её очень легко реализовать при помощи пары транзисторов, не задействуя микросхему мониторинга. Эта защита обязательно присутствует в любом БП и отключает его в случае короткого замыкания в любой из выходных цепей, во избежание возможного пожара.

Это не совсем «защита» (NLO – No Load Operation), а просто конструктивная особенность, позволяющая БП включаться и работать без нагрузки на его выходах.

Сменить шрифт на обычный короткая ссылка на новость:
следующая новость | предыдущая новость

Когда мы включаем блок питания, напряжения на выходе не сразу достигают нужного значения, а примерно через 0.02 секунды, и чтобы исключить подачу пониженного напряжения на компоненты ПК, существует специальный сигнал «power good», также иногда называемый «PWR_OK» или просто «PG», который подаётся, когда напряжения на выходах +12В, +5В и +3.3В достигают диапазона корректных значений. Для подачи этого сигнала выделена специальная линия на ATX разъёме питания, подключаемого к материнской плате (№8, серый провод).

Ещё одним потребителем этого сигнала является схема защиты от подачи пониженного напряжения (UVP) внутри БП , о которой ещё пойдёт речь – если она будет активна с момента включения на БП, то она просто не даст компьютеру включиться, сразу отключая БП, поскольку напряжения будут заведомо ниже номинальных. Поэтому эта схема включается только с подачей сигнала Power Good.

Этот сигнал подаётся схемой мониторинга или ШИМ-контроллером (широтно-импульсная модуляция, применяемая во всех современных импульсных БП, из-за чего они и получили своё название, английская аббревиатура – PWM, знакомая по современным кулерам – для управления их частотой вращения подаваемый на них ток модулируется подобным образом.)

Диаграмма подачи сигнала Power Good согласно спецификации ATX12V.
VAC – входящее переменное напряжение, PS_ON# – сигнал "power on", который подаётся при нажатии кнопки включения на системном блоке."O/P" – сокращение для "operating point", т.е. рабочее значение. И PWR_OK – это и есть сигнал Power Good. T1 меньше чем 500 мс, T2 находится между 0.1 мс и 20 мс, T3 находится между 100 мс and 500 мс, T4 меньше или равно 10 мс, T5 больше или равно 16 мс и T6 больше или равно 1 мс.

Защита в обоих случаях реализована при помощи одной и той же схемы, мониторящей выходные напряжения +12В, +5В и 3.3В и отключающей БП в случае если одно из них окажется выше (OVP – Over Voltage Protection) или ниже (UVP – Under Voltage Protection) определённого значения, которое также называют «точкой срабатывания». Это основные типы защиты, которые в настоящее время присутствуют фактически во всех блоках питания, более того, стандарт ATX12V требует наличия OVP.

Читайте также:  Старый видеомагнитофон что можно сделать

Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:

Выход Минимум Обычно Максимум +12 V 13.4 V 15.0 V 15.6 V +5 V 5.74 V 6.3 V 7.0 V +3.3 V 3.76 V 4.2 V 4.3 V

Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.

Такой блок питания будет длительное время выдавать , допустим, 15В вместо 12В без срабатывания защиты, что может привести к выходу из строя компонентов ПК.

С другой стороны, стандарт ATX12V чётко оговаривает, что выходные напряжения не должны отклоняться более чем на 5% от номинального значения, но при этом OVP может быть конфигурирована производителем БП на срабатывание при отклонении в 30% по линиям +12В и +3.3В и в 40% – по линии +5В.

Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.

Как пример возьмём популярную микросхему мониторинга PS223, которая используется в некоторых блоках питания, которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:

Выход Минимум Обычно Максимум
+12 V 13.1 V 13.8 V 14.5 V
+5 V 5.7 V 6.1 V 6.5 V
+3.3 V 3.7 V 3.9 V 4.1 V

Выход Минимум Обычно Максимум
+12 V 8.5 V 9.0 V 9.5 V
+5 V 3.3 V 3.5 V 3.7 V
+3.3 V 2.0 V 2.2 V 2.4 V

Другие микросхемы предоставляют другой набор точек срабатывания.

И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.

В случае с этой технологией (англоязычная аббревиатура OCP – Over Current Protection) есть один вопрос, который следовало бы рассмотреть более подробно. По международному стандарту IEC 60950-1 в компьютерном оборудовании ни по одному проводнику не должно передаваться более 240 Вольт-ампер, что в случае с постоянным током даёт 240 Ватт. Спецификация ATX12V включает в себя требование о защите от превышения по току во всех цепях. В случае с наиболее нагруженной цепью 12Вольт мы получаем максимально допустимый ток в 20Ампер. Естественно, такое ограничение не позволяет изготовить БП мощностью более 300Ватт, и для того, чтобы его обойти, выходную цепь +12В стали разбивать на две или более линий, каждая из которых имела собственную схему защиты от перегрузки по току. Соответственно, все выводы БП, имеющие +12В контакты, разбиваются на несколько групп по количеству линий, в некоторых случая на них даже наносится цветовая маркировка, чтобы адекватно распределять нагрузку по линиям.

Однако во многих дешёвых БП с заявленными двумя линиями +12В на практике используется только одна схема защиты по току, а все +12В провода внутри подключаются к одному выходу. Для того, чтобы реализовать адекватную работу такой схемы, защита от нагрузки по току срабатывает не при 20А , а при, например, 40А, и ограничение максимального тока по одному проводу достигается тем, что в реальной системе нагрузка в +12В всегда распределена по нескольким потребителям и ещё большему количеству проводов.

Более того, иногда разобраться, используется ли в данном конкретном БП отдельная защита по току для каждой линии +12В можно, только разобрав его и посмотрев на количество и подключение шунтов, используемых для измерения силы тока (в некоторых случаях количество шунтов может превышать количество линий, поскольку для измерения силы тока на одной линии могут использоваться несколько шунтов).

Различные типы шунтов для измерения силы тока.

Ещё одним интересным моментом является то, что в отличие от защиты от повышенного/пониженного напряжения допустимый уровень тока регулируется производителем БП, путём подпаивания резисторов того или иного номинала к выходам управляющей микросхемы. А на дешёвых БП, несмотря на требования стандарта ATX12V, эта защита может быть установлена только на линии +3.3В и +5В, либо отсутствовать вовсе.

Как следует из её названия (OTP – Over Temperature Protection), защита от перегрева выключает блок питания, если температура внутри его корпуса достигает определённого значения. Ей оснащены далеко не все блоки питания.

В блоках питания можно увидеть термистор, прикреплённый к радиатору (хотя в некоторых БП он может быть припаян прямо к печатной плате). Этот термистор соединён с цепью управления скоростью вращения вентилятора, он не используется для защиты от перегрева. В БП, оборудованных защитой от перегрева, обычно используется два термистора – один для управления вентилятором, другой, собственно для защиты от перегрева.

Читайте также:  Задачи на момент импульса с решением

В качестве англоязычного названия встречаются аббревиатуры OPP – Over Power Protection или OLP – Over Load Protection )Это опциональный вид защиты, реализуемый при помощи PWM-контроллера или микросхемы мониторинга, а на БП с активным PFC – контроллером PFC. В любом случае, мониторингу подвергается количество тока, который БП потребляет из электрической сети. Если его величина превосходит определённое значение, БП отключается.

Защита от короткого замыкания (SCP – Short Circuit Protection) – вероятно, самая старая из подобных технологий, потому что её очень легко реализовать при помощи пары транзисторов, не задействуя микросхему мониторинга. Эта защита обязательно присутствует в любом БП и отключает его в случае короткого замыкания в любой из выходных цепей, во избежание возможного пожара.

Это не совсем «защита» (NLO – No Load Operation), а просто конструктивная особенность, позволяющая БП включаться и работать без нагрузки на его выходах.

Добрый день всем! Есть БП от компа.собрался делать из него зарядное но он уходит в защиту.как по етой схеме отключить её?
Или как из ето го бп сделать зарядное уст-во

Смотрите также

Комментарии 52

Я выпаивал диод около 494. Защита уходила, БП автоматически стартовал. Блок живой и рабочий 3 года

на какой ноге?можеш на схеме чиркнуть?

Проблема в том, что АКБ представляет собой нагрузку с очень низким сопротивлением, поэтому возникают чудовищные токи, а БП выключается защитой. Обязательно нужна схема ограничения по току.

в ней я так думаю она есть? (еще не читал досконально)

Да, принцип работы устройства основан на этой схеме.

у меня в бж есть описание как сделать зарядник

я тоже использовал етот источник

Буквально недавно делал из такого же ИБП зарядное.
Выпаивал все элементы цепей, кроме +12V (ее повышал до 14.4В) и +5VSB.

Это надо ОКР ставить)))

Видно плохо, но там вроде tl434, в инете полно схем по переделке БП с этим ШИМ, есть так называемая "схема итальянца", я по ней свой переделывал. Вроде не очень сложная для повторения. Для работы этой ШИМ не очень много элементов нужно, но если заморочиться и сделать регулировку по напряжению и току получается очень хорошая вещь, в хозяйстве не только для зарядки уже можно использовать

не может он уходить без причины в защиту,
что то с ним не то

ножку 4 отрезать от схемы и посадить на минус через резистор 10К.

По линиям 3,3V, 5,0V и 12,0V должны стоять стабилитроны (обозначение на плате ZD), их нужно выпаять.

спасибо .завтра попробую!

Есть эта схема по-четче?

Кинь схему в ЛС нарисую что убрать что добавить.

Берешь даташит своей микросхемы и смотришь какие выводы отвечает за токовую защиту и переделываешь делитель напряжения под необходимое, я так делал. Или эти ноги вообще можно отпаять, но защиты не будет.
Мой БП регулирует до 17В

схему кинь. в личку…

У меня не на тл494.

Я как-то пытался приспособить подобный блок питания под зарядное… В итоге сгорела оптопара по обратной связи и выходное напряжение под 100 вольт скакануло… Разорвав электролиты на выходе! Так что в итоге пришлось делать с обычным трансформатором!

я бы тоже сделал так. если бы транс был

Хорошо подходят для этой цели трансы от старинных чернобелых ламповых теликов!
ТС-180 берёте и подматываете не разбирая сам транс, поверх катушек толстым эмальпроводом, предварительно вырвав с катушек бумагу.Там есть уже две по 6,3 вольта обмотки, их последовательно и в придачу с десяток витков подмотать. www.google.ru/search?q=%D…ZLSAhXCWiwKHWSWDb0QsAQIJg
Я так и сделал, тоже БП компа взорвал, а потом ТС-180 домотал и успокоился.я даже витки с отводами делал с шагом в 1 вольт и коммутировал галетным переключателем.
Такие трансы поищи на барахолке у дедов или у знакомых по гаражам или сараям ищи телик.

нет барахолок.а то что есть неназовеш барахолкой. да и в городе где сейчас нахожусь незнаю никого. а те у кого спрашивал в лом все здали… вот и ломаю голову

правильный вопрос — "как переделать этот бп в зарядник?"
тема бородатая, и, если при том обилии материала в сети по этой теме, он тем не менее возник, правильным ответом на него будет "никак, найти готовый зарядник"
без обид

без обид.покажи как именно ее переделать

книга "основы электроники" и журнал "Радио" в помощь

спасибо .добрый человек! проще бы было пару слов по существу .чем сидеть носом в буквари тыкать…

"хочу удалить себе аппендикс, скальпель у меня уже есть, подскажите как остановить кровотечение?" (с)

конечно же умно!

"умно" было бы взять 100Вт лампочку, трансформатор 220/18, диодный мост на 5-8 А, и без выноса мозга себе и окружающим зарядить аккум

Оцените статью
ПК Знаток
Добавить комментарий

Adblock detector