Как найти неизвестный катет в прямоугольном треугольнике

Решение прямоугольного треугольника по двум сторонам

Если известны катет a и гипотенуза c

Второй катет b определится по теореме Пифагора:

Угол A определится по формуле синуса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и гипотенуза)

Если известны катеты a и b

Гипотенуза с определится по теореме Пифагора:

Угол A определится по формуле тангенса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и катет)

Решение прямоугольного треугольника по стороне и острому углу

Если дан острый угол A, то B найдется по формуле:

Есть три варианта решения этой задачи. Первый – если в условиях задачи дано, что катеты равны (по сути, мы имеем прямоугольный равнобедренный треугольник). Второй – если еще дан какой-то угол (кроме угла в 45%, тогда мы имеем тот же равнобедренный треугольник и возвращаемся к первому варианту). И третий – когда известен один из катетов. Рассмотрим данные варианты подробнее.

Как найти равные катеты, при известной гипотенузе

  • гипотенуза (обозначим ее буквой "c") равна х см: c=x;
  • первый катет (обозначим его буквой "a") равен второму катету ((обозначим его буквой "b"): a=b;
Читайте также:  Cougar stx 700w cgr st 700 обзор

В этом варианте решение задачи основывается на использовании теоремы Пифагора. Ее применяют к прямоугольным треугольникам и основной ее вариант звучит, как: "Квадрат гипотенузы равен сумме квадратов катетов". Так, как катеты у нас равны, то мы можем обозначать оба катета одним и тем же сиволом: a=b, значит – a=a.

  1. Подставляем наши условные обозначения в теорему (с учетом вышеизложенного):
    c^2=a^2+a^2,
  2. Далее максимально упрощаем формулу:
    с^2=2*(a^2) – группируем,
    с=√2*а – подносим обе части уравнения к квадратному кореню,
    a=c/√2 – выносим искомое.
  3. Подставлем данное значение гипотенузы и получаем решение:
    a=x/√2

Как найти катеты, при известной гипотенузе и угле

  • гипотенуза (обозначим ее буквой "c") равна х см: c=x;
  • угол β равный q: β=q;

Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:

  • функция синуса – синус искомого угла равен отношению противолежащего катета к гипотенузе;
  • функция косинуса – косинус искомого угла равен отношению прилежащего катета к гипотенузе;

Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами "a" (прилежащий к углу) и "b" (противолежащий к углу). Соответственно наш угол лежит между катетом "a" и гипотенузой.

  1. Подставляем выбранные условные обозначения в формулу:
    sinβ = b/c
  2. Выводим катет:
    b=c*sinβ
  3. Подставляем наши данный и имеем один катет.
    b=c*sinq

Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.

Как найти один катет, если известна гипотенуза и другой катет

  • гипотенуза (обозначим ее буквой "c") равна х см: c=x;
  • катет (обозначим его буквой "b") равен y см: b=y;
  • размер другого катета (обозначим его буквой "a");

В этом варианте решением задачи, как и в первом, является использование теоремы Пифагора.

  1. Подставляем наши условные обозначения в теорему:
    c^2=a^2+b^2,
  2. Выносим необходимый катет:
    a^2=c^2-b^2
  3. Подносим обе части уравнения к квадратному кореню:
    a=√(c^2-b^2)
  4. Подставляем данные значения и имеем решение:
    a=√(x^2-y^2)
Читайте также:  Postgresql пароль postgres по умолчанию

Свойства

Зная один из катетов в прямоугольном треугольнике, можно найти второй катет и гипотенузу используя тригонометрические отношения – синус и тангенс известного угла. Так как отношение противолежащего углу катета к гипотенузе равно синусу этого угла, следовательно, чтобы найти гипотенузу нужно катет разделить на синус угла. a/c=sin⁡α c=a/sin⁡α

Второй катет можно найти из тангенса известного угла, как отношение известного катета к тангенсу. a/b=tan⁡α b=a/tan⁡α

Чтобы вычислить неизвестный угол в прямоугольном треугольнике нужно из 90 градусов вычесть величину угла α. β=90°-α

Периметр и площадь прямоугольного треугольника через катет и противолежащий ему угол можно выразить, подставив полученные ранее выражения для второго катета и гипотенузы в формулы. P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α S=ab/2=a^2/(2 tan⁡α )

Вычислить высоту также можно через тригонометрические отношения, но уже во внутреннем прямоугольном треугольнике со стороной a, который она образует. Для этого нужно сторону a, как гипотенузу такого треугольника умножить на синус угла β или косинус α, так как согласно тригонометрическим тождествам они равнозначны. (рис. 79.2) h=a cos⁡α

Медиана гипотенузы равна половине гипотенузы или известному катету a, деленному на два синуса α. Чтобы найти медианы катетов, приведем формулы к соответствующему виду для известной стороны и углы. (рис.79.3) m_с=c/2=a/(2 sin⁡α ) m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2=√(4a^2+a^2/tan^2⁡α )/2=(a√(4 tan^2⁡α+1))/(2 tan⁡α ) m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4b^2+a^2 )/2=√(4b^2+c^2-b^2 )/2=√(3 a^2/tan^2⁡α +a^2/sin^2⁡α )/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α ))/2=(a√(3 sin^2⁡α+tan^2⁡α ))/(2 tan⁡α sin⁡α )

Так как биссектрисой прямого угла в треугольнике является произведение двух сторон и корня из двух, деленное на сумму этих сторон, то заменив один из катетов на отношение известного катета к тангенсу, получаем следующее выражение. Аналогично, подставив отношение во вторую и третью формулы, можно вычислить биссектрисы углов α и β. (рис.79.4) l_с=(a a/tan⁡α √2)/(a+a/tan⁡α )=(a^2 √2)/(a tan⁡α+a)=(a√2)/(tan⁡α+1) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b+c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c)=(a/tan⁡α √(2c(a/tan⁡α +c) ))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c) ))/(a+c tan⁡α ) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)=(a√(2c(a+a/sin⁡α ) ))/(a+a/sin⁡α )=(a sin⁡α √(2c(a+a/sin⁡α ) ))/(a sin⁡α+a)

Читайте также:  После сброса настроек телефон не включается андроид

Средняя линия проходит параллельно одной из сторон треугольника, при этом образуя еще один подобный прямоугольный треугольник с такими же по величине углами, в котором все стороны в два раза меньше, чем у изначального. Исходя из этого, средние линии можно найти по следующим формулам, зная только катет и противолежащий ему угол. (рис.79.7) M_a=a/2 M_b=b/2=a/(2 tan⁡α ) M_c=c/2=a/(2 sin⁡α )

Радиус вписанной окружности равен разности катетов и гипотенузы, деленной на два, а чтобы найти радиус описанной окружности, нужно разделить на два гипотенузу. Заменяем второй катет и гипотенузу на отношения катета a к синусу и тангенсу соответственно. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+a/tan⁡α -a/sin⁡α )/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α ) R=c/2=a/2sin⁡α

Оцените статью
ПК Знаток
Добавить комментарий

Adblock detector