У какого беспроводного соединения наибольшая пропускная способность

Всё большую популярность и распространение набирает технология беспроводных сетей Wi-Fi. Многие современные устройства, которые мы используем (смартфон, планшет, ноутбук, роутер, телевизор), умеют работать с Wi-Fi. Самым распространенным на данный момент является стандарт IEEE 802.11n.

Основными характеристиками беспроводной сети Wi-Fi являются зона покрытия, скорость соединения и качество. В некоторых случаях нужно делать выбор в пользу какого-то параметра, наиболее важного для вас. Решите, что вам нужно в первую очередь: максимальное покрытие, быстрая или стабильная связь.

У пользователей периодически возникают вопросы по скорости и стабильности работы устройств по Wi-Fi. Самые распространенные из них:

  • Почему в статусе беспроводного соединения отображается максимальная скорость подключения, а реальная скорость передачи данных значительно ниже?
  • Почему при подключении беспроводного адаптера с поддержкой стандарта 802.11n скорость подключения 54 Мбит/с или ниже?
  • Где обещанная скорость 300 Мбит/с (или 150 Мбит/с) при подключении беспроводных устройств на стандарте 802.11n к интернет-центру Keenetic?
  • Как правильно настроить устройства беспроводной сети, чтобы они работали эффективно, стабильно и по возможности на максимальных скоростях, используя все преимущества стандарта IEEE 802.11n?

В данной статье мы ответим на эти вопросы и рассмотрим некоторые наиболее эффективные на наш взгляд способы увеличения скорости соединения, пропускной способности и стабильности беспроводной сети Wi-Fi при использовании стандарта 802.11n.

1. Максимальная скорость передачи данных и скорость подключения (канальная скорость) — разные понятия

Начнем с того, что многие пользователи ошибочно ориентируются на скорость подключения (в мегабитах в секунду), которая отображается в сведениях о подключении. Например, в операционной системе Windows она отображается в строке "Скорость" (Speed) на закладке "Общие" (General) в окне "Состояние" (Status) беспроводного соединения.

Данная цифра отображается драйвером беспроводного адаптера и показывает, какая скорость подключения на физическом уровне используется в настоящее время в рамках выбранного стандарта, то есть операционная система сообщает лишь о текущей (мгновенной) физической скорости подключения (её называют канальной скоростью).

Реальная пропускная способность соединения при передаче данных может быть значительно ниже. Реальная скорость передачи данных зависит от многих факторов, в частности от настроек точки доступа 802.11n, расстояния между клиентом и точкой доступа, числа одновременно подключенных к ней клиентских беспроводных адаптеров и др. Разница между скоростью подключения, которое показывает Windows, и реальными показателями объясняется прежде всего большим объемом служебных данных, потерями сетевых пакетов в беспроводной среде и затратами на повторную передачу.

Информацию о том, как проверить скорости передачи данных в беспроводной сети, можно найти в статье "Реальная скорость соединения, используемая в технологии Wi-Fi".

2. Преимущества стандарта 802.11n работают только для адаптеров 802.11n

Стандарт 802.11n использует различные технологии, включая MIMO, для достижения более высокой пропускной способности, но они эффективны только при работе клиентов, поддерживающих спецификации 802.11n (об этом можно найти информацию в статье "Базовые положения стандарта IEEE 802.11n для сетей Wi-Fi"). Нужно помнить, что использование беспроводной точки доступа стандарта 802.11n не повысит производительность работы уже существующих клиентов стандарта 802.11b/g.

3. По возможности не используйте в сети Wi-Fi устройства устаревших стандартов

В беспроводной сети на базе точки доступа 802.11n можно использовать устройства предыдущих стандартов. Точка доступа 802.11n может одновременно работать и с 802.11n-адаптерами, и со старыми устройствами стандарта 802.11g и даже 802.11b. Стандартом 802.11n предусмотрены механизмы поддержки устаревших стандартов (legacy-механизмы). Скорость работы с клиентами 802.11n снижается (на 50-80%) только тогда, когда более медленные устройства активно передают или принимают данные. Для достижения максимальной производительности (или, по крайней мере, ее проверки) беспроводной сети 802.11n рекомендуется использовать в сети клиенты только этого стандарта.

4. Почему при подключении адаптера 802.11n скорость соединения только 54 Мбит/с или ниже?

4.1. В большинстве устройств стандарта 802.11n будет наблюдаться снижение пропускной способности до 80% при использовании устаревших методов обеспечения безопасности WEP или WPA/TKIP. В стандарте 802.11n установлено, что высокая производительность (свыше 54 Мбит/с) не сможет быть реализована, если используется один из указанных выше методов. Исключение составляют лишь устройства, которые не являются сертифицированными под стандарт 802.11n.
Если вы не хотите получить снижение скорости, используйте только метод безопасности беспроводной сети WPA2 с алгоритмом AES (стандарт безопасности IEEE 802.11i).

4.2. В некоторых случаях, при использовании Wi-Fi-адаптера стандарта 802.11n и беспроводной точки доступа стандарта 802.11n, происходит подключение только на стандарте 802.11g. Это также может происходить по причине того, что в точке доступа по умолчанию в настройках безопасности беспроводной сети предустановлена технология WPA2 с протоколом TKIP. Опять же рекомендация: в настройках WPA2 используйте именно алгоритм AES вместо протокола TKIP, и и тогда подключение к точке доступа будет происходить с использованием стандарта 802.11n.

Другая возможная причина соединения только на стандарте 802.11g заключается в том, что в настройках точки доступа используется режим автоопределения (802.11b/g/n). Если вы хотите установить соединение на стандарте 802.11n, то не используйте режим автоопределения 802.11b/g/n, а вручную установите использование только 802.11n. Но помните, что в этом случае клиенты 802.11b/g не смогут подключиться к беспроводной сети, кроме клиентов с поддержкой 802.11n.

5. Используйте диапазон 5 ГГц

Некоторые интернет-центры поддерживают двухдиапазонный Wi-Fi — работу точки доступа в двух частотных диапазонах 2,4 и 5 ГГц. Сейчас практически все сети Wi-Fi работают на частоте 2,4 ГГц. Чем больше устройств работают на одной и той же частоте, тем сильнее они мешают друг другу, что сильно ухудшает качество соединения. Это особенно актуально в многоквартирных домах, где устройства Wi-Fi имеются практически в каждой квартире. Преимуществом частоты 5 ГГц является свободный радиоэфир, так как эта частота пока редко используется, и как результат минимальное количество помех и максимальное качество соединения. Для использования сети 5 ГГц ваш смартфон, планшет, ноутбук или USB-адаптер должен обязательно поддерживать работу на этой частоте.
При использовании диапазона 5 ГГц рекомендуем выбирать каналы 36, 40, 44 и 48, т.к. на них не используется режим сосуществования с радарами (DFS).

6. В некоторых случаях на точке доступа рекомендуется понизить мощность сигнала Wi-Fi до уровня 50 — 75%

6.1. Использование слишком большой излучаемой мощности сигнала Wi-Fi не всегда означает, что сеть будет работать стабильно и быстро. Большая мощность сигнала может вызывать дополнительные помехи и ошибки в работе сети. Если радиоэфир, в котором работает ваша точка доступа, сильно загружен (при обзоре беспроводных сетей вы видите большое их количество и мощность их сигнала высокая), то может сказываться влияние внутриканальных и межканальных помех. Наличие таких помех влияют на производительность сети, т.к. резко увеличивают уровень шума, что приводит к низкой стабильности связи из-за постоянной перепосылки пакетов. В этом случае рекомендуем понизить мощность передатчика в точке доступа.
Если настройку понижения мощности передатчика вы не нашли в точке доступа, то это можно сделать другими способами: по возможности увеличить расстояние между точкой доступа и адаптером; открутить антенну на точке доступа (если такая возможность предусмотрена в устройстве); использовать антенну с более низким коэффициентом усиления сигнала (например, с коэффициентом усиления 2 дБи вместо 5 дБи).

Читайте также:  Средство создания установочных носителей windows

6.2. Мощность передатчика точки доступа в роутере обычно выше в 2-3 раза, чем на клиентских мобильных устройствах (ноутбук/смартфон/планшет). В зоне покрытия сети могут быть такие места, где клиент будет слышать точку доступа хорошо, а точка доступа клиента — плохо, или вообще не слышать (ситуация, когда сигнал на клиентском устройстве есть, а связи нет). Как вариант, для получения более стабильной связи можно понизить мощность передатчика в точке доступа.

7. Убедитесь, что на точке доступа и на адаптере поддерживается и включен режим WMM

Для получения скорости свыше 54 Мбит/с должен быть включен режим WMM (Wi-Fi Multimedia).
В спецификации 802.11n требуется поддержка в устройствах стандарта 802.11e (Качество обслуживания QoS для улучшения работы беспроводной сети) с целью использования режима с высокой пропускной способностью HT (High Throughput), т.е. скорости свыше 54 Мбит/с.

Поддержка режима WMM требуется для устройств, которые будут сертифицированы для использования стандарта 802.11n. Рекомендуем включать по умолчанию режим WMM во всех сертифицированных Wi-Fi-устройствах (точки доступа, беспроводные маршрутизаторы, адаптеры).
Обращаем ваше внимание, что режим WMM должен быть включен как на точке доступа, так и на беспроводном адаптере.

Режим WMM в настройках различных адаптеров может называться по разному: WMM, Мультимедийная среда, WMM Capable и т.п.

8. Отключите использование канала 40 МГц

Стандартом 802.11n предусмотрена возможность использования широкополосных каналов — 40 МГц для повышения пропускной способности.

Каналы 40 МГц в большей степени подвержены помехам и могут мешать работе других устройств, что вызовет проблемы с производительностью и надежностью, особенно при наличии других сетей Wi-Fi и других устройств, работающих в диапазоне 2,4 ГГц. Каналы 40 МГц могут также создавать помехи для других устройств, использующих этот диапазон (устройства Bluetooth, беспроводные телефоны, соседние сети Wi-Fi).
В реальности при изменении ширины канала с 20 МГц на 40 МГц (или использовании режима автоматического выбора ширины канала "Auto 20/40" в некоторых устройствах) можно получить даже снижение, а не увеличение пропускной способности. Снижение пропускной способности и нестабильность соединения может происходить несмотря на цифры канальной скорости подключения, которая в 2 раза выше при использовании ширины канала 40 МГц. При снижении уровня сигнала, использование канала шириной 40 МГц становится гораздо менее эффективным и не обеспечивает повышение пропускной способности. При использовании канала шириной 40 МГц и слабом уровне сигнала пропускная способность может снижаться до 80% и не привести к желаемому увеличению пропускной способности.
Иногда лучше использовать стабильную канальную скорость 135 Мбит/c, чем нестабильные 270 Мбит/с.

Реальные преимущества использования канала шириной 40 МГц (в частности увеличение пропускной способности от 10 до 20 Мбит/с), как правило, можно получить только в условиях сильного сигнала и малого числа излучателей в частотном диапазоне. Использование ширины канала 40 МГц оправданно в частотном диапазоне 5 ГГц.

Если же вы решили использовать канал шириной 40 МГц и при этом заметили снижение скорости (не канальной скорости подключения, которая отображается в веб-конфигураторе в меню Системный монитор, а скорости загрузки веб-страниц или приёма/передачи файлов), рекомендуем использовать канал шириной 20 МГц. Так вы сможете увеличить пропускную способность соединения.
Кроме того, с некоторыми устройствами соединение удается установить именно при использовании канала шириной 20 МГц (при использовании канала шириной 40 МГц соединение не устанавливается).

9. Используйте актуальный драйвер беспроводного адаптера

Низкая скорость соединения может быть следствием плохой совместимости драйверов различных производителей оборудования Wi-Fi. Нередки случаи, когда установив другую версию драйвера беспроводного адаптера от его производителя или от производителя используемого в нем чипсета, можно получить существенное увеличение скорости. П осетите веб-сайты производителей ваших беспроводных устройств и ноутбуков, чтобы проверить наличие новых драйверов и других обновлений. Установите самую последнюю версию драйверов беспроводного адаптера.

10. Для устройств Apple

10.1. Увеличить скорость работы беспроводной сети Wi-Fi Keenetic с некоторыми устройствами компании Apple может помочь смена страны на United States. Это можно сделать через веб-конфигураторе в настройках беспроводной сети в поле "Страна".

10.2. В некоторых устройствах мощность передатчика снижена на крайних каналах (1 и 11/13 для 2.4 ГГц) примерно в 2 раза, чем на средних. Для увеличения зоны покрытия попробуйте использовать канал 6.

11. Отключите режим энергосбережения

Низкая скорость соединения Wi-Fi может наблюдаться в некоторых мобильных устройствах, в которых активирован режим энергосбережения (спящий режим, sleep mode). Он может оказывать влияние на работу беспроводного адаптера клиента Wi-Fi. Выключите вручную данный режим для проверки подключения. На некоторых устройствах режим энергосбережения активируется автоматически, при определенном пределе уровня заряда батареи (например, когда заряд становится ниже 20 или 15 %). Если вы не знаете как в настройках операционной системы отключить режим энергосбережения, то в этом случае рекомендуем следить за тем, чтобы уровень заряда батареи не опускался ниже определенного значения (в некоторых системах индикатор батареи в правом верхнем углу меняет свой цвет на желтый ).

На ноутбуке с ОС Windows в свойствах беспроводного адаптера на вкладке "Управление электропитанием" попробуйте выключить опцию "Разрешить отключение этого устройства для экономии энергии". Например:

Также может наблюдаться низкая скорость Wi-Fi после выхода устройства из режима сна. В этом случае попробуйте просто выключить устройство (завершить работу системы) и заново его включить.

12. Усилители приема сигнала Wi-Fi

Некоторые модели интернет-центров Keenetic c индексом KN-xxxx (Lite, Omni, DSL) имеют дополнительные усилители приема в радиочасти, так называемые LNA (Low Noise Amplifier), которые помогают лучше "слышать" маломощных беспроводных клиентов, таких как смартфоны, интернет-вещи и элементы умного дома. В "старших" моделях (Giga, Ultra, Extra, Duo) применяются FEM-модули (Front-end Module), которые содержат не только усилители приема сигнала, но и усилители передачи.
Подробную информацию вы найдете в статье "Усилители приема сигнала Wi-Fi".

Итак, мы рассмотрели только некоторые способы увеличения скорости соединения, пропускной способности и стабильности беспроводной сети Wi-Fi. Но не нужно забывать, что на работу беспроводных сетей Wi-Fi оказывают влияние и другие факторы (например, расположение устройств и расстояние между ними, количества помех на пути беспроводного сигнала, наличие большого числа устройств Wi-Fi, работающих в радиусе действия вашего устройства и использующих тот же частотный диапазон, и др.).

Полезные ссылки:

Пользователи, считающие этот материал полезным: 192 из 212

В прошлой статье мы подробно рассмотрели, что такое:

А также на том, можно ли с их помощью определить производительность устройства и выбрать WiFi точку доступа с повышенной пропускной способностью.

Поляризация антенны ( Polarization , Polarisation , Polarity)

Продолжая тему характеристик WiFi антенн , рассмотрим одну из основных – поляризацию. В datasheet’ах устройств она может обозначаться как polarity , polarization , HPOL ( горизонтальная поляризация), VPOL ( вертикальная поляризация) и т. д.

Читайте также:  Что такое коррекция громкости в айфоне

Что такое поляризация? Сигнал WiFi , как мы знаем, — это волна , представляющая собой колебания электромагнитного поля , которое создается напряжением между электрическим полем и магнитным. Если эти колебания совершаются в одной плоскости , волна имеет плоскую , так называемую линейную поляризацию. В устройствах WiFi в подавляющем большинстве случаев применяется именно такая.

Возможна еще круговая , или эллиптическая поляризация электромагнитной волны , но в беспроводных устройствах она практически не используется.

В зависимости от того , как направлен вектор электрического поля , линейная поляризация может быть:

  • горизонтальной ( вектор электрического поля движется влево-вправо ),
  • вертикальной ( вектор электрического поля движется вверх-вниз ),
  • наклонной ( например , в AirFiber),
  • двойной ( объединяющей вертикальную и горизонтальную поляризацию , или две наклонные поляризации , перпендикулярные другу другу ).

Одиночная поляризация

При установке беспроводных точек доступа , роутеров и т. п. с одиночно поляризованной антенной нужно учитывать важный нюанс: передающее и принимающее устройство должны быть в одной поляризации. Иначе скорость сигнала будет очень низкой , или же соединения не будет вовсе.

Что лучше — горизонтальная или вертикальная поляризация?

Однозначного ответа на этот вопрос не существует. Стандартно беспроводные AP и CPE имеют вертикальную поляризацию. Принято считать , что вертикально поляризованные волны лучше подходят для соединений « точка-многоточка» ( за счет лучшего обхода таких препятствий , как дома , деревья в узких просветах), а горизонтально поляризованные — для соединений по типу « точка-точка» ( за счет меньшего количества помех).

Но на практике , повторимся , необходимо тестировать , какая поляризация будет эффективнее в каждом конкретном случае.

Двойная поляризация ( dual-pol)

В устройствах операторского класса , а также клиентских точках доступа таких как Ubiquiti Nanostation M2 , MikroTik SXT и т. д. чаще всего используется двойная поляризация ( горизонтальная+вертикальная или же две наклонных). Такая реализация улучшает характеристики точки доступа.

  • Совмещение горизонтальной и вертикальной поляризации избавляет от необходимости заботиться о совпадении поляризаций приобретаемых устройств.
  • Это улучшает прием , так как антенна способна принять и ту часть сигнала , которая при отражении от различных препятствий сменила поляризацию на противоположную.
  • Чаще всего двойная поляризация конструктивно совмещается в устройстве с технологией MIMO 2×2 , что в общем дает лучшую производительность и пропускную способность , по сравнению с точками доступа с одной поляризацией и без множественной приемопередачи .

При соединении устройств с одиночной поляризацией и двойной ( например, абонентских точек доступа и базовой станции), нужно учитывать, что пропускная способность соединения упадет до уровня однополяризационной точки, т. е. потенциал базовой станции не будет использоваться в полной мере.

Количество антенн

Количество антенн в WiFi точке доступа – так ли важен этот показатель для выбора беспроводных устройств? Можно ли с его помощью определить точку доступа или роутер, которые дадут большую скорость беспроводного соединения, чем аналоги?

Некоторые пользователи полагают, что между пропускной способностью WiFi точки доступа и количеством ее антенн существует прямая зависимость: чем больше антенн, тем выше пропускная способность.

Но не все так однозначно.

Максимальная пропускная способность беспроводной точки доступа напрямую не зависит от количества антенн в нем. Хотя, конечно же, большее число антенн имеет положительное значение:

  • увеличивается чувствительность устройства,
  • эффективнее реализуется пространственное мультиплексирование, благодаря одновременной передаче данных через несколько передающих и несколько принимающих антенн.

В результате пропускная способность все-таки улучшается, но, как мы уже сказали, далеко не прямо пропорционально количеству антенн.

Кроме того, параметр «количество антенн» – размытое понятие:

  • Во-первых, устройство может физически иметь 3 антенны, но при этом поддерживать работу в MIMO 2×2, то есть иметь функционал 2 передающих и 2 принимающих антенн. В этом случае третья антенна выполняет функции и передающей, и принимающей, динамически переключаясь в разные режимы .
  • Во-вторых, для определения, к примеру, в каком режиме MIMO работает беспроводная точка доступа (в последнее время производители все чаще не указывают эту характеристику), необходимо знать не общее количество антенн WiFi, а отдельное число передающих и принимающих антенн. Чтобы определить, что устройство работает по технологии MIMO 1X2, нужно знать, что в нем 1 передающая и 2 принимающие антенны.

Возможно именно поэтому в технических характеристиках оборудования данные о количестве антенн часто не указываются вообще, ввиду бесполезности этой информации.

Вместо них производитель обычно сообщает значение более важного параметра – chain.

Chain (чейн)

Chain иногда переводится как «цепь», «канал передачи/приема» или же не переводится никак, и просто транслитерируется — «чейн». Этим понятием обозначается комплексный канал, цепь приема-передачи, включая антенну. Оно напрямую описывает реализацию MIMO в устройстве и употребляется в двух вариантах:

1. Количество chain означает «сводное» количество каналов приема/передачи MIMO. Например, в технических характеристиках точки доступа с MIMO 2×2 указывается dual chain (две цепи), а в устройстве с MIMO 3 ×3 — triple chain (три цепи).

Если MIMO имеет вид 2×2 или 3 ×3 , в этом случае количество цепей обычно равно количеству передающих антенн.

2. Количество chain означает отдельно количество каналов приема и количество каналов передачи MIMO. Чаще всего такой вариант используется при записи беспроводных характеристик в виде: nTnR, где nT – число цепей передачи, nR – число цепей приема. К примеру: 2T3R – два чейна передачи, три чейна приема), 1T1R – один чейн на передачу, один на прием и т. д.). Такое обозначение встречается сравнительно реже.

Chain и пропускная способность

Опять-таки, многие используют количество chain для расчета максимальной пропускной способности беспроводного устройства. То есть, считается, что если в характеристиках точки доступа 802.11n есть обозначение «dual chain» или же MIMO 2×2 , то максимальная скорость такого оборудования — 300 Мбит/сек (150*2). Часто это действительно оказывается так, но только по причине простого совпадения.

На самом деле, рассчитывать максимальную пропускную способность, исходя из количества chain – неверный подход.

Два chain и MIMO 2×2 для устройств стандарта 802.11n вовсе не гарантирует канальную скорость в 300 Мбит/сек, а MIMO 3 ×3 с тремя цепями приема-передачи совсем не означает, что максимальная пропускная способность устройства — 450 Мбит/сек.

Все дело в том, что канальная скорость напрямую зависит не от количества приемопередающих антенн, и не от количества цепей радиопередачи, а от такого параметра, как spatial streams. Если заглянуть в таблицу скоростей передачи данных для различных модуляций и схем кодирования стандартов 802.11n и 802.11ac, мы увидим, что для расчета канальной скорости устройств по стандарту используется именно этот параметр, а не chain, количество антенн или MIMO.

Spatial streams

Наконец-то мы добрались до параметра, который действительно напрямую влияет на пропускную способность. Spatial streams (SS) переводится как пространственный поток. Это пространственное объединение данных при передаче данных в режиме MIMO.

Далеко не все подозревают о существовании этого параметра по той простой причине, что многие производители просто не указывают его в спецификациях на оборудование. Характеристики MIMO обозначаются обычно как "MIMO 2×2" или " MIMO 3×3", в то время как полная запись параметров MIMO должна содержать еще и количество SS.

Правильные полные характеристики MIMO в оборудовании должны быть представлены записью вида:

T x R :S

T – количество передающих цепей,

R – количество принимающих сигнал цепей,

S – количество пространственных потоков.

Вот как раз от количества пространственных потоков и зависит максимальная канальная скорость беспроводных устройств.

Точка доступа с 1SS будет иметь максимальную скорость по стандарту 802.11n — 150 Мбит/сек, 2SS – 300 Мбит/сек, 3SS – 450 Мбит/сек.

Читайте также:  Pdf joiner online русская версия

Чем chain (чейн) отличается от spatial streams?

Количество чейнов показывает, сколько каналов приема-передачи устройства используются в любой момент времени.

Количество spatial streams показывает, сколько пространственных потоков используются для передачи данных, или другими словами – сколько чейнов одновременно используются для передачи потока уникальных данных.

При этом количество пространственных потоков не может быть больше количества chain. Например, если у нас точка MIMO 2 ×3 , то пространственных потоков не может быть больше 2.

А вот обратная ситуация, когда устройство с MIMO 3 ×3 имеет только 2 пространственных потока, а то и вовсе 1, вполне может иметь место. То есть вполне возможна ситуация, когда в параметрах устройства написано MIMO 3×3, но его канальная скорость (максимальная пропускная способность по стандарту) будет не 450 Мбит/сек, а 300 Мбит/сек (если SS=2) или 150 Мбит/сек (если SS=1).

Определяем количество spatial streams в характеристиках WiFi оборудования

К сожалению, увидеть значение этого параметра в документации многих производителей практически нереально, причем даже для устройств операторского класса. Поэтому можно попробовать определить его его самим.

Первый способ. Посмотреть, какие MCS (схемы модуляции) поддерживает устройство. Если для стандарта 802.11n используется максимум MCS7, т. е. схемы модуляции и кодирования с одним пространственным потоком, и не используются MCS 8-15 и выше, с 2-3 SS, то понятно, что точка доступа умеет работать только с 1 пространственным потоком, а значит и канальная скорость для стандарта 802.11n составит только 150 Мбит/сек.

Второй способ (более точный) . Если производитель указывает модель беспроводного чипа, использующегося в оборудовании (например, это делает MikroTik) — посмотреть его характеристики. Полные параметры MIMO «вшиты» именно в чип.

Например, в RB922UAGS-5HPacT-NM используется чип QCA9880-BR4A-R, и если немного погуглить, то находим, что эта модель поддерживает MIMO 3х3:3, т. е. работает с тремя пространственными потоками. Соответственно, канальная скорость такого оборудования будет составлять 150 Мбит/сек *3 = 450 Мбит/сек.

Вывод

Итак, для определения максимальной пропускной способности устройств (так называемой канальной скорости) необходимо знать количество Spatial Streams. Количество приемных и передающих антенн, а также чейнов не связаны напрямую с пропускной способностью устройства.

Однако большее количество антенн и цепей приема-передачи – всегда лучше, чем меньше: улучшается чувствительность устройства и стабильность приема-передачи (дополнительные каналы повышают отказоустойчивость).

Кроме того, при выборе оборудования необходимо обязательно учитывать поляризацию антенн: несовпадение поляризаций точек доступа приведет к тому, что соединение установить не удастся, или же его скорость будет очень низкой.

Скорость беспроводной сети зависит от нескольких факторов.

Производительность беспроводных локальных сетей определяется тем, какой стандарт Wi-Fi они поддерживают. Максимальную пропускную способность могут предложить сети, поддерживающие стандарт 802.11n – до 600 Мбит/сек (при использовании MIMO). Пропускная способность сетей, поддерживающих стандарт 802.11a или 802.11g, может составить до 54 Мбит/сек. (Сравните со стандартными проводными сетями Ethernet, пропускная способность которых составляет 100 или 1000 Мбит/сек.)

На практике, даже при максимально возможном уровне сигнала производительность Wi-Fi сетей никогда не достигает указанного выше теоретического максимума. Например, скорость сетей, поддерживающих стандарт 802.11b, обычно составляет не более 50% их теоретического максимума, т. е. приблизительно 5.5 Мбит/сек. Соответственно, скорость сетей, поддерживающих стандарт 802.11a или 802.11g, обычно составляет не более 20 Мбит/сек. Причинами несоответствия теории и практики являются избыточность кодирования протокола, помехи в сигнале, а также изменение расстояния Хемминга с изменением расстояния между приемником и передатчиком. Кроме того, чем больше устройств в сети одновременно участвуют в обмене данными, тем пропорционально ниже пропускная способность сети в расчёте на каждое устройство, что естественным образом ограничивает количество устройств, которое имеет смысл подключать к одной точке доступа или роутеру (другое ограничение может быть вызвано особенностями работы встроенного DHCP-сервера, у устройств из нашего ассортимента итоговая цифра находилась в диапазоне от 26 до 255 устройств).

Ряд производителей выпустили устройства, с поддержкой фирменных расширений протоколов 802.11b и 802.11g, с теоретической максимальной скоростью работы 22Мбит/сек и 108Мбит/сек соответственно, однако радикальной прибавки в скорости по сравнению с работой на стандартных протоколах в данный момент от них не наблюдается.

Кроме того, скорость работы любой пары устройств существенно падает с уменьшением уровня сигнала, поэтому зачастую наиболее эффективным средством поднятия скорости для удалённых устройств является применение антенн с большим коэффициентом усиления.

Эфир — и, соответственно, радиоканал — в качестве среды передачи существует лишь в единственном экземпляре и ведет себя так же, как раньше концентратор в сети Ethernet: при попытке передачи данных несколькими сторонами одновременно сигналы мешают друг другу. Поэтому стандартами WLAN предусматривается, что перед передачей станция проверяет, свободна ли среда. Однако это отнюдь не исключает ситуацию, когда две станции одновременно идентифицируют среду как свободную и начинают передачу. В «разделяемом» Ethernet соответствующий эффект называется коллизией.

В проводной сети отправители могут распознать коллизии уже в процессе передачи, прервать ее и повторить попытку после случайного интервала времени. Однако в радиосети таких мер недостаточно. Поэтому 802.11 вводит «пакет подтверждения» (ACK), который получатель передает обратно отправителю; на эту процедуру отводится дополнительное время ожидания. Если сложить все предусмотренные протоколом периоды ожидания — короткие межкадровые интервалы (Short Inter Frame Space,

SIFS) и распределенные межкадровые интервалы функции распределенной координации (Distributed Coordination Function Inter Frame Space, DIFS) для беспроводной сети стандарта 802.11а, то накладные расходы составляют 50 мкс на пакет (см. Рисунок 1).

Рисунок 1. Если станция WLAN собирается начать передачу и находит среду занятой, то ей придется подождать некоторое время. Доступ к среде регулируется при помощи «межкадровых интервалов» разной длины (DIFS и SIFS)

Помимо этого, при вычислении издержек следует учесть, что каждый пакет данных содержит не только полезные данные, но и необходимые заголовки для многих протокольных уровней (см. Рисунок 2). В случае пакета длиной 1500 байт, передаваемого по стандарту 802.11 со скоростью 54 Мбит/с, появляются «лишние» 64 байт с издержками в 20 мкс. Пакет АСК обрабатывается физическим уровнем так же, как и пакет данных, в нем отсутствуют лишь части от порядкового номера до контрольной суммы. Вдобавок заголовок укорочен, поэтому для пакета АСК необходимо всего 24 мкс.

В общей сложности передача 1500 байт полезной нагрузки со скоростью 54 Мбит/с занимает 325 мкс, поэтому фактическая скорость передачи составляет 37 Мбит/с.

С учетом издержек на ТСР/IP (еще 40 байт на пакет, пакеты подтверждения TCP) и повторов из-за сбоев в передаче достигаемая на практике скорость будет равна 25 Мбит/с — такое же соотношение значений номинальной/фактической скоростей получается и при использовании 802.11b (от 5 до 6 при 11 Мбит/с).

Для 802.11g, наследника 11b, принцип работы которого мало чем отличается от 802.11а, требование обратной совместимости с IEEE 802.11b может привести к тому, что скорость передачи окажется еще меньше. Проблема возникает, когда в диалог двух станций 11g может вмешаться карта 802.11b: последняя не способна распознать, что среда в данный момент занята, поскольку в 802.11g используется отличный от 11b метод модуляции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *