Трехмерная компьютерная графика в информатике

В век информационных технологий компьютерная графика получила широкое распространение во всем мире. Почему она так популярна? Где она применяется? И вообще, что такое компьютерная графика? Давайте разберемся!

Компьютерная графика: что такое?

Проще всего – это наука. Кроме того, это один из разделов информатики. Он изучает способы обработки и форматирования графического изображения с помощью компьютера.

Уроки компьютерной графики на сегодняшний день существуют и в школах, и в высших учебных заведениях. И трудно сегодня найти область, где она не была бы востребована.

Также на вопрос: «Что такое компьютерная графика?» – можно ответить, что это одно из многих направлений информатики и, кроме того, относится к наиболее молодым: оно существует около сорока лет. Как и всякая иная наука, она имеет свой определенный предмет, цели, методы и задачи.

Какие задачи решает компьютерная графика?

Если рассматривать этот раздел информатики в широком смысле, то можно увидеть, что средства компьютерной графики позволяют решать следующие три типа задач:

1) Перевод словесного описания в графическое изображение.

2) Задача распознавания образов, то есть перевод картинки в описание.

3) Редактирование графических изображений.

Направления компьютерной графики

Несмотря на то что сфера применения этой области информатики, бесспорно, крайне широка, можно выделить основные направления компьютерной графики, где она стала важнейшим средством решения возникающих задач.

Во-первых, иллюстративное направление. Оно является самым широким из всех, так как охватывает задачи начиная от простой визуализации данных и заканчивая созданием анимационных фильмов.

Во-вторых, саморазвивающееся направление: компьютерная графика, темы и возможности которой поистине безграничны, позволяет расширять и совершенствовать свои навыки.

В-третьих, исследовательское направление. Оно включает в себя изображение абстрактных понятий. То есть применение компьютерной графики направлено на создание изображения того, что не имеет физического аналога. Зачем? Как правило, с целью показать модель для наглядности либо проследить изменение параметров и скорректировать их.

Какие существуют виды компьютерной графики?

Еще раз: что такое компьютерная графика? Это раздел информатики, изучающий способы и средства обработки и создания графического изображения с помощью техники. Различают четыре вида компьютерной графики, несмотря на то, что для обработки картинки с помощью компьютера существует огромное количество различных программ. Это растровая, векторная, фрактальная и 3-D графика.

Каковы их отличительные черты? В первую очередь виды компьютерной графики различаются по принципам формирования иллюстрации при отображении на бумаге или на экране монитора.

Растровая графика

Базовым элементом растрового изображения или иллюстрации является точка. При условии, что картинка находится на экране, точка называется пикселем. Каждый из пикселей изображения обладает своими параметрами: цветом и расположением на холсте. Разумеется, что чем меньше размеры пикселей и больше их количество, тем лучше выглядит картинка.

Основная проблема растрового изображения – это большие объемы данных.

Второй недостаток растровой графики – необходимость увеличить картинку для того, чтобы рассмотреть детали.

Кроме того, при сильном увеличении происходит пикселизация изображения, то есть разделение его на пиксели, что в значительной степени искажает иллюстрацию.

Векторная графика

Элементарной составляющей векторной графики является линия. Естественно, что в растровой графике тоже присутствуют линии, однако они рассматриваются как совокупность точек. А в векторной графике все, что нарисовано, является совокупностью линий.

Этот тип компьютерной графики идеален для того, чтобы хранить высокоточные изображения, такие как, например, чертежи и схемы.

Информация в файле хранится не как графическое изображение, а в виде координат точек, с помощью которых программа воссоздает рисунок.

Соответственно, для каждой из точек линии резервируется одна из ячеек памяти. Необходимо заметить, что в векторной графике объем памяти, занимаемый одним объектом, остается неизменным, а также не зависит от его размера и длины. Почему так происходит? Потому что линия в векторной графике задается в виде нескольких параметров, или, проще говоря, формулой. Что бы мы ни делали с ней в дальнейшем, в ячейке памяти будут изменяться лишь параметры объекта. Количество ячеек памяти останется прежним.

Читайте также:  I5 4460 для игр

Таким образом, можно прийти к выводу, что векторные файлы, по сравнению с растровыми, занимают гораздо меньший объем памяти.

Трехмерная графика

3D-графика, или трехмерная графика, изучает методы и приемы создания объемных моделей объектов, максимально соответствующие реальным. Подобные изображения можно рассмотреть со всех сторон.

Гладкие поверхности и разнообразные графические фигуры используются с целью создания объемных иллюстраций. С их помощью художник создает сначала каркас будущего объекта, а потом поверхность покрывают такими материалами, которые визуально похожи на реальные. Далее делают гравитацию, осветление, свойства атмосферы и прочие параметры пространства, в котором находится изображаемый объект. Затем, при условии, что объект движется, задают траекторию движения и его скорость.

Фрактальная графика

Фракталом называется рисунок, состоящий из одинаковых элементов. Большое количество изображений являются фракталами. К примеру, снежинка Коха, множество Мандельброта, треугольник Серпинского, а также «дракон» Хартера-Хейтчея.

Фрактальный рисунок можно построить либо с помощью какого-либо алгоритма, либо путем автоматического создания изображения, которое осуществляется путем вычислений по заданным формулам.

Модификация изображения происходит при внесении изменений в структуру алгоритма или смене коэффициентов в формуле.

Главным преимуществом фрактальной графики является то, что в файле изображения сохраняются только формулы и алгоритмы.

Области применения компьютерной графики

Однако необходимо заметить, что выделение данных направлений весьма условно. Кроме того, оно может быть детализировано и расширено.

Итак, перечислим основные области компьютерной графики:

3) отображение визуальной информации;

4) создание пользовательского интерфейса.

Где применяется компьютерная графика?

В инженерном программировании широко используется трехмерная компьютерная графика. Информатика в первую очередь пришла на помощь инженерам и математикам. Средствами трехмерной графики происходит моделирование физических объектов и процессов, например, в мультипликации, компьютерных играх и кинематографе.

Растровая графика широко применяется при разработке полиграфических и мультимедийных изданий. Очень редко иллюстрации, которые выполняются средствами растровой графики, создаются с помощью компьютерных программ вручную. Зачастую с этой целью пользуются отсканированные изображения, которые художник изготовил на фотографии или бумаге.

В современном мире широко применяются цифровые фото- и видеокамеры с целью ввода растровых фотографий в компьютер. Соответственно, подавляющее большинство графических редакторов, которые предназначены для работы с растровой графикой, ориентированы не на создание изображений, а на редактирование и обработку.

Растровые изображения применяются в интернете в том случае, если есть необходимость передать всю цветовую гамму.

А вот программы для работы с векторной графикой, наоборот, чаще всего используются с целью создания иллюстраций, ежели для обработки. Подобные средства нередко используют в издательствах, редакциях, дизайнерских бюро и рекламных агентствах.

Средствами векторной графики гораздо проще решаются вопросы оформительских работ, которые основаны на применении простейших элементов и шрифтов.

Бесспорно, существуют примеры векторных высокохудожественных произведений, однако они являются скорее исключением, чем правилом, по той простой причине, что подготовка иллюстраций средствами векторной графики необычайно сложна.

Для автоматического создания изображений с помощью математических расчетов созданы программные средства, работающие с факториальной графикой. Именно в программировании, а не в оформлении или рисовании состоит создание факториальной композиции. Факториальная графика редко применяется с целью создания электронного или печатного документа, однако ее нередко используют в развлекательных целях.

Компьютерная графика — раздел информатики, пред метом которого является создание и обработка на компьютере с гра­фических изображений (рисунков, чертежей, фотографий и пр.)

История компьютерной графики

О компьютерной графике заговорили после опытов Джей У. Форрестера (инженер компьютерной лаборатории Массачусетского технологического института) в 1951 году.

К предшественникам компьютерных рисунков можно отнести первые не­затейливые картинки из точек и букв, получаемые на телетайпах телеграфа, а позже — на печатающих устройствах, подключенных к ЭВМ.

Итак, в начале были точки и простые линии. Этот набор стремительно обогащался. 1970-е годы стали временем широкого использования машинной графики. Одно из важнейших отличий современных ПК состоит в воз­можности вывода на экран графического изображения.

В доступный для многих инструмент компьютерная графика превратилась благодаря Айвену Сазерленду, автору одной из первых графических систем.

Направления компьютерной графики

Направление

Назначение

Программное обеспечение

Научная

Визуализация объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов.

Деловая

Создание иллюстраций, используемых составления иллюстрации статистических отчетов и пр.

Читайте также:  Расписание на неделю шаблон excel

Используется в работе учреждений.

Электронные таблицы

Конструкторская

Создание плоских и трехмерных изображений.

Используется в работе инженеров-конструкторов.

Системы автоматизированного проектирования (САПР)

Иллюстративная

Создание произвольных рисунков и чертежей.

Графические редакторы

Рекламная

Создание реалистических изображений. Используется для создания рекламных роликов, мультфильмов, компьютерных игр, видеоуроков, видеопрезентаций и пр.

Графические редакторы (со сложным математическим аппаратом)

Компьютерная анимация

Создание движущихся изображений на экране монитора. Слово «анимация» означает «оживление».

Аналоговый и дискретный способы представления

Человек способен воспринимать и хранить информацию в форме образов ( зрительных, звуковых, осязательных, вкусовых, обонятельных ).

Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий, …)

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно .

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно .

аналогового представления графической информации

может служить живописное полотно, цвет которого изменяется непрерывно.

дискретного представления графической информации

напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.

Все органы чувств человека имеют дело с аналоговыми сигналами.

Любая информация, используемая в технических системах, также начинается и заканчивается аналоговым сигналом.

Таким образом, представление об аналоговом способе следует рассматривать в качестве необходимой предпосылки перехода к цифровым технологиям.

Пространственная дискретизация – перевод графического изображения из аналоговой формы в цифровую форму путем разбивания изображения на отдельные фрагменты, причем каждому фрагменту присваивается код цвета (красный, синий, . ).

Растровое изображение представляет собой мозаику из очень мелких элементов — пикселей.

Оно похоже на лист клетчатой бумаги, на котором каждая клеточка (пиксель) закрашена определенным цветом, и в результате такой раскраски формируется изображение.

Качество кодирования изображения зависит от :

– размера точки – чем меньше её размер, тем больше количество точек в изображении

– количества цветов (палитры) – чем большее количество возможных состояний точки, тем качественнее изображение

Достоинства растровой графики:

1. Каждому видеопикселю можно придать любой из миллионов цветовых оттенков. Если размеры пикселей приближаются к размерам видеопикселей, то растровое изображение выглядит не хуже фотографии. Таким образом, растровая графика эффективно представляет изображения фотографического качества.

2. Компьютер легко управляет устройствами вывода, которые используют точки для представления отдельных пикселей. Поэтому растровые изображения могут быть легко распечатаны на принтере.

Недостатки растровой графики:

1. В файле растрового изображения запоминается информация о цвете каждого видеопикселя в виде комбинации битов. Простые растровые картинки занимают небольшой объем памяти (несколько десятков или сотен килобайтов). Изображения фотографического качества часто требуют нескольких мегабайтов. Таким образом, для хранения растровых изображений требуется большой объем памяти.

Самым простым решением проблемы хранения растровых изображений является увеличение емкости запоминающих устройств компьютера. Современные жесткие и оптические диски предоставляют значительные объемы памяти для данных. Оборотной стороной этого решения является стоимость, хотя цены на эти запоминающие устройства в последнее время заметно снижаются.

Другой способ решения проблемы заключается в сжатии графических файлов, т. е. использовании программ, уменьшающих размеры файлов растровой графики за счет изменения способа организации данных. Существует несколько методов сжатия графических данных.

2. Проблемой растровых файлов является масштабирование:

– при существенном увеличении изображения появляется зернистость, ступенчатость

– при большом уменьшении существенно снижается количество точек, поэтому исчезают наиболее мелкие детали, происходит потеря четкости

Для обработки растровых файлов используют редакторы: MS Paint, Adobe Photoshop

Векторные изображения являются оптимальным средством хранения высокоточных графических объектов (рисунки, чертежи, схемы. ), для которых имеет значение сохранение четких и ясных контуров.

Векторные изображения формируются из объектов (точка, линия, окружность, прямоугольник . ), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул.

Достоинства векторной графики

1. При кодировании векторного изображения хранится не само изображение объекта, а координаты точек, используя которые программа каждый раз воссоздает изображение заново.

Поэтому объем памяти векторных изображений очень мал по сравнению с растровой графикой.

RECTANGLE 1, 1, 200, 200, Red, Green

Несжатое растровое описание квадрата требует примерно в 1333 раза большей памяти, чем векторное.

2. Векторные изображения могут быть легко масштабированы без потери качества.

Читайте также:  Ethernet контроллер что это такое

Это возможно, так как масштабирование изображений производится с помощью простых математических операций (умножения параметров графических примитивов на коэффициент масштабирования).

Недостатки векторной графики

1. Векторная графика не предназначена для создания изображений фотографического качества. В векторном формате изображение всегда будет выглядеть, как рисунок.

В последних версиях векторных программ внедряется все больше элементов "живописности" (падающие тени, прозрачности и другие эффекты, ранее свойственные исключительно программам точечной графики).

2. Векторные изображения иногда не выводятся на печать или выглядят на бумаге не так, как хотелось бы.

Это происходит оттого, что векторные изображения описываются тысячами команд.

В процессе печати эти команды передаются принтеру, а он может, не распознав какой-либо примитив, заменить его другим – похожим, понятным принтеру.

Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами: CorelDRAW, Adobe Illustrator.

Изображение строится по формуле. В памяти компьютера хранится не изображение, а только формула, с помощью которой можно получить бесконечное количество различных изображений.

Фракталы – это геометрические объекты с удивительными свойствами: любая часть фрактала содержит его уменьшенное изображение.

То есть, сколько фрактал не увеличивай, из любой его части на вас будет смотреть его уменьшенная копия.

Фракталы замечательны тем, что многие из них удивительно похожи на то, что мы встречаем в природе. Снежинку, морского конька, ветви деревьев, разряд молнии и горные массивы можно нарисовать, используя фракталы.

Поэтому многие современные учёные говорят о том, что природа имеет свойство фрактальности.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов.

Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Ее часто используют в развлекательных программах.

Трехмерная графика оперирует с объектами в трехмерном пространстве, применяется для моделирования объектов геометрической формы, создания компьютерных образов и анимации в кино и компьютерных играх. Объект ЗО-графики представляется как набор поверхностей, минимальная поверхность называется полигоном (наиболее часто в качестве полигона выбирается треугольник). Координаты полигона – это вектор (х,у,z), для создания визуальных эффектов вектор полигона обрабатывается совместно стремя матрицами: поворота, сдвига, масштабирования.

Произведение элементов матриц и вектора дает новый вектор – результат преобразования всех вершин полигона, а преобразование всех полигонов позволяет получить новый объект, повернутый или сдвинутый, или масштабированный относительно исходного его положения. На мониторе представляется проекция трехмерной фигуры, а объемное изображение формируется в мозгу человека.

Пространственное моделирование объектов предполагает прежде всего построение каркаса формы объекта, имеющего объем, выбор "виртуального" материала для визуализации поверхностей объекта, создание текстур. Объект должен находиться в некой среде, которая описывается рядом параметров (силы и направленности света, атмосферы и др.). Объект будет двигаться по определенной траектории с указанной скоростью движения. Сценарий модели представляется в виде последовательности кадров, по отношению к которым выполняется анимация (одушевление) объектов. Завершением работы с трехмерной графикой является наложение поверхностных спецэффектов, повышающих реалистичность, качество восприятия объекта.

На рис. 13.11 представлено изображение 3D-объекта.

Важнейшим элементом трехмерной графики является создание 3D-анимации: персонажей компьютерных игр, рекламных роликов, а также архитектурной анимации. 3D-модели получили самое широкое распространение (красочные мультфильмы, спецэффекты, визуализация технологических процессов и архитектурной анимации). Различают следующие типы ЗО-моделей:

■ игровые (Low-Polygonal) – для создания поверхности трехмерного объекта используется небольшое число двухмерных многоугольников, составляющих единую модель;

■ фотореалистичные (Hi-Polygonal) – для создания поверхности трехмерного объекта используется большое число полигонов

Рис. 13.11. Образец графики 3D

(двухмерных многоугольников). Создаваемое изображение практически не отличается от фотографий, но требует полноты и точности данных, описывающих 3D-модель;

Трехмерная графика применяется также при создании мультимедийной презентации, которая используется в качестве имиджевой рекламы, соединяя в себе интерактивный веб-сайт и рекламный ролик.

В качестве достоинств трехмерной графики отмечается высокий уровень ее выразительности и фотореалистичности одновременно. Модели для 3D-графики создаются с учетом зрительского восприятия, с детальной проработкой элементов и способов управления благодаря тщательному анализу исходных материалов: описаний, схем, фото- и видеоматериалов, живописных работ, сопутствующей информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *