Теорема о вычетах примеры решения

] в лорановском разложении этой функции в точке z0. Отсюда, в частности, вытекает, что вычет в устранимой особой точке равен нулю. Укажем некоторые формулы для вычисления вычета в полюсе функции /(г). 1. zq — полюс первого порядка: 00 Умножим обе части этого равенства на z – zo и, переходя к пределу при z zo, получим, что Если функцию f(z) можно представить в виде дроби где и ф(г) — аналитические функции, причем простой полюс, то из формулы (3) вытекает, что Пример 1. Пусть Особые точки » функции , ЯВЛЯЮТСЯ простыми гюлюсами. Поэтому 2. zo — полюс порядка т: Для устранения отрицательных степеней z – z0 умножим обе части этого равенства на (z-Zo)m, Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля Продифференцируем полученное соотношение m – 1 раз и, переходя к пределу при получим, что Пример 2. Пусть 4 Особыми точками этой функции являются точки г = ±i. Это — полюсы второго порядка. Вычислим, например, res/(i). Имеем Теорема 21i Пусть функция f(z) аналитична всюду в области D за исключением конечного числа изолированных особых точек 7огда для любой замкнутой области G, лежащей в D и содержащей точки zn внутри, справедливо равенство Теорема вытекает из теоремы Коши для многосвязной области. Построим окруж ности столь малого радиуса г, что ограниченные ими круги — содержатся в области G и не пересекаются друг с другом (рис. 29). Обозначим через G* область, которая получается из области G путем удаления кругов Uи . U„. Функция f(z) анали-тична в области G* и непрерывна в ее замыкании G7. Поэтому по теореме Коши для многосвязной области имеем Из этой формулы, пользуясь определением вычета получаем требуемое равенство (5). 6.1. Вычет функции относительно бесконечно удаленной точки Говорят, чтофункция f(z) является аналитической в бесконечно удаленной точке z = оо, если функция аналитична вточке С =0. Это следует понимать так: функцию g(0= f (f) можно доопределить до аналитической, положив Например, функция аналитична в точке z = оо, поскольку функция аналитична в точке С = 0. Пусть функция /(г) аналитична в некоторой окрестности бесконечно удаленной точки (кроме самой точки z = оо). Точка z = оо называется изолированной особой точкой функции /(г), если в некоторой окрестности этой точки нет других особых точек функции f(z). Функция имеет в бесконечности неизолированную особенность: полюсы zk = к-к этой функции накапливаются в бесконечности, если к оо. Говорят, что z — оо является устранимой особой тонкой, полюсом или существенно особой точкой функции f(z) в зависимости от того, конечен, бесконечен или вовсе не существует lim f(z). Критерии типа бесконечно удаленной точки, связанные с разложением Лорана, изменяюгся по сравнению с критериями для конечных особых точек. Теорема 22. Если z — оо является устранимой особой точкой функции /(z), то лоранов-ское разложение f(z) в окрестности этой точки не содержит полож и тельных степеней z;eaiu z — оо — полюс, то это разложение содержит конечное число положительных степеней z, в случае существенной особенности — бесконечное число положительных степеней z. При этом лорановским разложением функции /(z) в окрестности бесконечно удаленной точки будем называть разложение в ряд Лорана, сходящийся всюду вне круга достаточно большого радиуса R с центром в точке z — 0 (кроме, быть может, самой точки z — оо). Пусть функция f(z) — аналитична в некоторой окрестности точки z = оо (кроме, быть может, самой этой точки). Вычетом функции /(z) в бесконечности называют величину пае 7 — достаточно большая окружность z = р, проходимая по часовой стрелке (так, что окрестность точки z — оо остается слева, как и в случае конечной точки г = го). И з этого определения следует, что вычет функции в бесконечности равен коэффициенту при z

Читайте также:  Dell 5110 материнская плата

! в лорановском разложении /(z) в окрестности точки z — оо, взятому с противоположным знаком: Пример 3. Для функции f(z) = имеем f(z) = 1 + j. Это выражение можно рассматривать как ее лорановское разложение в окрестности +очки z = оо. Легко видеть, что так что точка z = оо является устранимой особой точкой, и мы полагаем, как обычно, /(оо) = 1. Здесь , следовательно, Из этого примера следует, что вычет аналитической функции относительно бесконечно удаленной устранимой особой точки (в отличие от конечной устранимой особой точки) может оказаться отличным от нуля. Известные тейлоровские разложения функций е1, cosz, sinz, chz, shz можно рассматривать также и как лорановские разложения в окрестности точки z — оо. Так как все эти разложения содержат бесконечное множество положительных степеней z, то перечисленные функции имеюгвточке z = оо существенную особенность. Теорема 23. Если функция f(z) имеет в расширенной комплексной плоскости конечное число особых точек, то сумма всех ее вычетов, включая и вычет в бесконечности, равна нулю. Так что, если — конечные особые точки функции f 0 — вещественное число. При вычислении таких интегралов часто бывает полезной следующая лемма. Лемма Жордана. Пусть функция f(z) аналитична в верхней полуплоскости исключением конечного числа изолированных особых точек, и при стремится к нулю равномерно относительно arg z. Тогда для любого положитыьного а где 7л — верхняя полуокружность Условие равномерного стремления /(г) к нулю означает, что на полуокружности 7R Оценим исследуемый интефал. Замечая, что на 7Л В силу известного неравенства (см. рис. 31) справедливого при (для доказательства достаточно заметить, что и, значит, функция ^ убывает на полуинтервале Сопоставляя формулы (13) и (14), заключаем, что 4 Введем вспомогательную функцию Пример 7. Вычислить интеграл Нетрудно видеть, что если г = х, то Jmh(z) совпадает с подынтегральной функцией Рассмотрим контур, указанный на рис.32. При достаточно большом R на дуге 7л Функция вследствие соотношения , удовлетворяет условию при Значит, по лемме Жордана По основной теореме о вычетах для любого имеем Переходя к пределу в равенстве (16) и учитывая соотношение (15). получим, что Разделяя слева и справа вещественные и мнимые части, будем иметь В силу того что подынтегральная функция f(x) — четная, окончательно получим В рассматриваемом примере функция f(z) не имеет особых точек на действительной оси. Однако небольшое изменение описанного метода позволяет применять его и в том случае, когда функция f(z) имеет на действительной оси особые точки (простые полюсы). Покажем, как это делается. Пример 8. Вычислить интеграл 4 функция обладает следующими свойствами: при совпадает с подынтегральной функцией; 2) имеет особенность на действительной оси — простой полюс в точке г = 0. Рассмотрим в верхней полуплоскости Im z ^ 0 замкнутый контур Г, состоящий из отрезков действительной оси [-Я, -г), (г,R) и дуг полуокружностей (рис. 33). Внутри этого контура находится лишь один полюс функции h(z) — точка z = Ы. Согласно основной теореме о вычетах, Преобразуем сначала сумму интегралов по отрезкам (-Я, -г| и |г, Я) действительной оси. Заменяя х на

х в первом слагаемом правой части равенства (18) и объединяя его с третьим слагаемым, получим Обратимся ко второму слагаемому в формуле (18). Так как где lim g(z) = 0. то подынтегральная функция h(z) представима в следующем виде: Тогда Полагая . получим, что Четвертое слагаемое в равенстве (18) при Я —» оо стремится к нулю согласно лемме Жордана, ибо функция ^ стремится к нулю при |г| оо. Таким образом, при равенство (18) принимает вид 6.3. Вычисление интегралов Френеля Интегралы Френеля: Рассмотрим вспомогательную функцию /(г) = с" и контур Г, указанный на рис. . Внутри контура Г функция f(z) — аналитическая, и по теореме Коши Покажем, что где Гг2 — полуокружность радиуса г2. Функция 0(0 = удовлетворяет условиям леммы Жордана, и, значит, Переходя в формуле (20) к пределу при г -* оо, получим, что На отрезке ВО: Отсюда откуда Упражнения Найдите действительную и мнимую части функдаи: Найдите образы действительной и мнимой осей при отображении: Докажи те, что функция непрерывна на всей комплексной плоскости: Пользуясь условиями Коши—Римана, выясните, является ли функция аналитической хотя бы в одной точке или нет: Восстановите аналитическую в окрестности точки 20 функцию /(г) по известной действительной части и (или по известной мнимой части v(x, у)) и значению f(z0): Покажите, что следующие функци и являются гармоническими: Может ли данная функция быть действительной или мнимой частью аналитической функции Найдите действительную и мнимую части функции: Найдите модуль и главное значение аргумента функции в указанной точке zq: Найдите логарифмы следующих чисел: Решите уравнение: 38. Вычислите интеграл /— линия, соединяющая точки z = 0 отрето к прямой, б) дуга параболы ломаная 39. Вычислите интеграл — полуокружность Вычислите интегралы: 43. Вычислите интеграл / где 7 — верхняя половина окру*« ости |z| = 1 (выбирается Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля ветвь функци и л/z, для которой 44. Вычислите интеграл / ^ dz, где 7 — отрезок прямой, идущий из точки zj = 1 в точку Вычислите интегралы: Найдите радиус сходимости ряда: Рашожите функцию в ряд Тейлора и найдите радиус сходимости полученного ряда: постепеням z + I. 55. cosz постепеням 56.—-— постепеням z + 2. 57.—^— постепеням z. 58. sh2 z постепеням z. Найдите нули функции и определите их порядки: z Определите область сходимости ряда: Разложите в ряд Лорана в окрестности точки г = 0: Разяожитс в ряд Лорана в уюзан ном кольце: Найдите особые точки и определит е их характер: Найдите вычеты функции в особых точках : Вычислите интегралы: Определите характер бесконечно удаленной точки: Вычислите интегралы: Ответы z переходите ось ы, при изменении z от -оо до +оо и изменяется от до -оо и от +оо до +1 (точка +1 исключается), ось у переходит в окружность Ось х переходит в ось и так же, как и в упр-и 5, ось у переходит в прямую u

Читайте также:  Что светится под ультрафиолетом

1, пробегаемую от точми 1 до 1 + too и от 1 – »оо до точки 1 (сама точка 1 исключается

Пусть функция w = f(z) – аналитическая в окрестности точки z, за исключением самой точки (т.е. z – изолированная особая точка функции w = f(z)).

Пусть К – замкнутый контур, лежащий в указанной окрестности и содержащий z (рис .2.24).

Вычет обозначается: или res f(z) (происходит от слова resudi – остаток):

. (2.84)

Теорема: Вычет относительно устранимой особой точки равен нулю.

Доказательство: Пусть z – устранимая точка, тогда функция

будет аналитическая в окрестности z и по теореме Коши что и требовалось доказать.

Теорема Коши о вычетах: если функция w = f(z) аналитическая в конечной замкнутой области , ограниченной контуром К, за исключением конечного числа особых точек z1, z2,…,zn , лежащих внутри , то

. (2.85)

Доказательство: Опишем из каждой особой точки zК (k = 1, 2,…,n) как из центра, окружности Кк настолько малого радиуса, чтобы они целиком лежали в и не содержали других особых точек функции f(z) (рис. 2.25).

В многосвязной области f(z) будет аналитической. По теореме Коши:

Умножим и разделим правую часть последнего равенства на 2p I получим:

Что и требовалось доказать.

Найдем вычет относительно простого полюса. Пусть f(z) имеет в точке простой полюс, тогда

Как отмечено ранее она аналитическая в окрестности z и по формуле Коши

Но на контуре К: , поэтому

Вывод: вычет относительно простого полюса находят по формуле:

Найти вычет функции относительно точки z = 0.

Решение. Для функции точка z = 0 – простой полюс. Поэтому

Если функция , где , – аналитические в точке z, причем для точка z есть нуль первого порядка, а , то для вычисления вычета относительно простого полюса можно пользоваться формулой:

Формула (2.88) получается сразу:

Решение. Согласно формуле (2.88)

так как z = 0 – простой полюс.

Читайте также:  Iphone se model a1723

Решение. Функция имеет две особые точки z = 0 и z = 2; обе точки попадают в область, ограниченную окружностью |z| = 3.

а вторая – простой полюс (сделайте рисунок).

Вычет относительно устраненной точки равен нулю. Вычет относительно точки z = 2 находим по формуле (2.88):

По основной теореме Коши о вычетах (2.85), получим:

Вывод формулы для нахождения вычета относительно кратного полюса аналогичен рассуждениям, проведенным для случая простого полюса, а именно: если f(z) имеет в точке z кратный полюс, то для функции (k – кратность полюса) точка z устранимая. Тогда функция

аналитическая в окрестностях z. Значит,

Но на контуре поэтому

Вывод: получена формула для нахождения вычета функции относительно полюса порядка k:

Пример 4

Вычислить , вдоль замкнутого контура К, соединяющего точки: 2+2i, -2+i, -2-2i, 2-2i и 2+2i отрезками прямых (рис. 2.26)

Решение. Точка – полюс третьего порядка функции . По формуле (2.89) имеем:

Задачи для упражнений

Вычислить интегралы, используя основную теорему Коши о вычетах:

Примеры вычисления интегралов с помощью основной теоремы о вычетах.

1. , где L – квадрат |x| + |y| = 2.

Обе особые точки подынтегральной функции: z1= 0 и – расположены внутри контура L, поэтому . Точка z1= 0 -полюс первого порядка, . Точка – нуль первого порядка и для числителя, и для знаменателя; докажем, что это – устранимая особая точка подынтегральной функции. Пусть , тогда , и , конечный предел существует, поэтому, действительно, это – устранимая особая точка, и . По основной теореме о вычетах .

2. . В примере 2 раздела 19.9.3.4. Примеры нахождения вычетов мы доказали, что точка z = 2 – существенно особая точка подынтегральной функции, и , поэтому .

3. . Здесь подынтегральная функция имеет две особых точки, расположенных в области, находящейся внутри контура: z1 = i (простой полюс) и z2 = – i (полюс второго порядка). , ; .

4. . Внутри контура расположена одна особая точка подынтегральной функции f(z): z = 0. Это – существенно особая точка, поэтому для нахождения вычета необходимо найти коэффициент A -1 разложения f(z) в ряд Лорана в окрестности этой точки. ; .

, однако нет необходимости выписывать произведение этих рядов, достаточно только собрать те попарные произведения, которые дают минус первую степень переменной z: . Легко сообразить, что это ряд для sh z при , т.е. , и .

Основная теорема о вычетах. Пусть функция f(z) аналитична во всех точках ограниченной замкнутой области , границей которой является контур L, за исключением конечного числа особых точек z1, z2, z3, …, zn, расположенных внутри L. Тогда .

Док-во. Окружим каждую особою точку zk, k = 1, 2, …,n контуром таким, чтобы все контуры лежали в области D и не пересекались. В области, ограниченной контурами L, , функция аналитична, поэтому по 19.6.2.2. Теореме Коши для многосвязной области

. По определению вычета, , следовательно, , что и требовалось доказать. Формула Ньютона-Лебница

Утв. Если f(z) аналитическая в некоторой области, , то .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *