Теорема о сложной функции

Производная сложная функция

Пусть y = f(u), а u= u(x). Полиучаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u=u(x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y= f(u).

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Теорема. Если функция u= u(x) имеет в некоторой точке x производную и принимает в этой точке значение u = u(x), а функция y= f(u) имеет в точке u производную yu= f‘(u), то сложная функция y = f(u(x)) в указанной точке x тоже имеет производную, которая равна yx= f ‘(uu ‘(x), где вместо u должно быть подставлено выражение u= u(x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Т.к. u – дифференцируема в точке x, то u – непрерывна в этой точке. Поэтому при Δx→0 Δu→0. Аналогично при Δu→0 Δy→0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu→0)

,

где α→0 при Δu→0, а, следовательно, и при Δx→0.

Перепишем это равенство в виде:

Полученное равенство справедливо и при Δu=0 при произвольном α, так как оно превращается в тождество 0=0. При Δu=0 будем полагать α=0. Разделим все члены полученного равенства на Δx

.

По условию . Поэтому, переходя к пределу при Δx→0, получим yx= yu·u ‘x . Теорема доказана.

Читайте также:  Из за чего снижается скорость интернета

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y ‘x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем yx= yu·ux . Применяя эту же теорему для ux получаем , т.е.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8955 – | 7622 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Основные формулы

Здесь мы приводим вывод следующих формул для производной сложной функции.
Если , то
.
Если , то
.
Если , то
.

Производная сложной функции от одной переменной

Пусть функцию от переменной x можно представить как сложную функцию в следующем виде:
,
где и есть некоторые функции. Функция дифференцируема при некотором значении переменной x . Функция дифференцируема при значении переменной .
Тогда сложная (составная) функция дифференцируема в точке x и ее производная определяется по формуле:
(1) .

Формулу (1) также можно записать так:
;
.

Доказательство

Введем следующие обозначения.
;
.
Здесь есть функция от переменных и , есть функция от переменных и . Но мы будем опускать аргументы этих функций, чтобы не загромождать выкладки.

Поскольку функции и дифференцируемы в точках x и , соответственно, то в этих точках существуют производные этих функций, которые являются следующими пределами:
;
.

Рассмотрим следующую функцию:
.
При фиксированном значении переменной u , является функцией от . Очевидно, что
.
Тогда
.

Читайте также:  Как очистить диски на компьютере

Поскольку функция является дифференцируемой функцией в точке , то она непрерывна в этой точке. Поэтому
.
Тогда
.

Теперь находим производную.

.

Следствие

Если функцию от переменной x можно представить как сложную функцию от сложной функции
,
то ее производная определяется по формуле
.
Здесь , и есть некоторые дифференцируемые функции.

Чтобы доказать эту формулу, мы последовательно вычисляем производную по правилу дифференцирования сложной функции.
Рассмотрим сложную функцию
.
Ее производная
.
Рассмотрим исходную функцию
.
Ее производная
.

Производная сложной функции от двух переменных

Теперь пусть сложная функция зависит от нескольких переменных. Вначале рассмотрим случай сложной функции от двух переменных.

Пусть функцию , зависящую от переменной x , можно представить как сложную функцию от двух переменных в следующем виде:
,
где
и есть дифференцируемые функции при некотором значении переменной x ;
– функция от двух переменных, дифференцируемая в точке , . Тогда сложная функция определена в некоторой окрестности точки и имеет в производную, которая определяется по формуле:
(2) .

Доказательство

Поскольку функции и дифференцируемы в точке , то они определены в некоторой окрестности этой точки, непрерывны в точке и существуют их производные в точке , которые являются следующими пределами:
;
.
Здесь
;
.
В силу непрерывности этих функций в точке имеем:
;
.

Поскольку функция дифференцируема в точке , то она определена в некоторой окрестности этой точки, непрерывна в этой точке и ее приращение можно записать в следующем виде:
(3) .
Здесь

– приращение функции при приращении ее аргументов на величины и ;
;

– частные производные функции по переменным и .
При фиксированных значениях и , и есть функции от переменных и . Они стремятся к нулю при и :
;
.
Поскольку и , то
;
.

Приращение функции :

.
Производная сложной функции :
.
Подставим (3):

.

Производная сложной функции от нескольких переменных

Приведенный выше вывод легко обобщается на случай, когда число переменных сложной функции больше двух.

Читайте также:  Собираю команду для создания игры

Например, если f является функцией от трех переменных, то
,
где
, и есть дифференцируемые функции при некотором значении переменной x ;
– дифференцируемая функция, от трех переменных, в точке , , .
Тогда, из определения дифференцируемости функции , имеем:
(4)
.
Поскольку, в силу непрерывности,
; ; ,
то
;
;
.

Разделив (4) на и выполнив предельный переход , получим:
.

И, наконец, рассмотрим самый общий случай.
Пусть функцию от переменной x можно представить как сложную функцию от n переменных в следующем виде:
,
где
есть дифференцируемые функции при некотором значении переменной x ;
– дифференцируемая функция от n переменных в точке
, , . , .
Тогда
.

Автор: Олег Одинцов . Опубликовано: 13-11-2016 Изменено: 01-02-2017

Если функции и дифференцируемы соответственно в точках и , где , то — дифференцируема в точке , причём .

Доказательство

Т.к. функции и непрерывны, то — непрерывны в точке определена в

Примеры

Следствие (об инвариантности формы первого дифференциала)

Дифференциал функции имеет один и тот же вид как в случае, когда — независимая переменная, так и в случае, когда — дифференцируемая функция какого-либо другого переменного.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *