Составить уравнение плоскости перпендикулярной двум плоскостям

УСЛОВИЕ:

Составить уравнение плоскости, проходящей через точку M1(2; -3; 5) и перпендикулярной к двум плоскостям 2x+y-2z+1 = 0, x+y+z-5 = 0

Добавил dashokkkk , просмотры: ☺ 1066 ⌚ 2018-11-06 13:24:24. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ sova

vector× vector=(3;-4;1) -направляющий вектор прямой, по которой пересекаются данные плоскости.
Это вектор является и нормальным вектором искомой плоскости.

Уравнение плоскости с нормальным вектором vector=(А;В;С) и проходящей через точку (x_(o);y_(o);z_(o)) имеет вид:
A*(x-x_(o)) + B * (y- y_(o)) + C *(z-z_(o))=0

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

frac<pi x><4>=(-1)^frac<pi ><4>+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

Читайте также:  Рейтинг антивирусов для андроида

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

В этой статье содержится ответ на вопрос: «Как написать уравнение плоскости, проходящей через заданную точку перпендикулярно к двум заданным плоскостям»? Сначала приведены необходимые теоретические сведения, а также рассуждения, помогающие составить уравнение плоскости, проходящей через заданную точку перпендикулярно к двум пересекающимся плоскостям. После этого разобраны решения характерных примеров и задач.

Навигация по странице.

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к двум заданным плоскостям.

Начнем с постановки задачи.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка и две пересекающиеся плоскости и . Требуется написать уравнение плоскости , проходящей через точку М1 перпендикулярно к плоскостям и .

Заметим, что плоскость , уравнение которой нам требуется составить, перпендикулярна к прямой, по которой пересекаются плоскости и . Действительно, из признака перпендикулярности двух плоскостей следует, что плоскость, перпендикулярная линии пересечения двух плоскостей, перпендикулярна к каждой из этих плоскостей. Более того, существует только одна плоскость, проходящая через заданную точку пространства перпендикулярно двум пересекающимся плоскостям, так как существует только одна плоскость, проходящая через заданную точку перпендикулярно к заданной прямой.

Теперь приступим именно к решению поставленной задачи.

Из условия нам известны координаты точки , через которую проходит плоскость . Если мы найдем координаты нормального вектора плоскости , то сможем записать общее уравнение плоскости, проходящей через заданную точку с заданным нормальным вектором, в виде , где – нормальный вектор плоскости .

Читайте также:  Philips xenium s386 характеристики

Итак, наша задача сводится к нахождению координат нормального вектора плоскости . В свою очередь нормальный вектор плоскости есть направляющий вектор прямой, по которой пересекаются две заданные плоскости и , так как плоскость перпендикулярна к пересекающимся плоскостям и . В частности, если плоскости и заданы общими уравнениями плоскостей вида и соответственно, то направляющим вектором прямой, по которой пересекаются плоскости и , является векторное произведение векторов и (об этом написано в разделе координаты направляющего вектора прямой, по которой пересекаются две заданные плоскости).

Чтобы написать уравнение плоскости, проходящей через заданную точку перпендикулярно к двум пересекающимся плоскостям и , нужно

  • найти координаты направляющего вектора прямой, по которой пересекаются заданные плоскости и ;
  • принять эти координаты за соответствующие координаты А , В и С нормального вектора плоскости, уравнение которой мы ищем;
  • написать уравнение плоскости вида – это и есть искомое уравнение плоскости, проходящей через заданную точку перпендикулярно к двум пересекающимся плоскостям и .

Чтобы все стало понятно, предлагаем перейти к следующему пункту и ознакомиться с подробным решением примеров, в которых находится уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к двум заданным пересекающимся плоскостям.

Примеры составления уравнения плоскости, проходящей через заданную точку перпендикулярно к двум заданным плоскостям.

Начнем с задачи на нахождение уравнения плоскости, перпендикулярной к двум координатным плоскостям.

УСЛОВИЕ:

Составить уравнение плоскости, проходящей через точку M1(2; -3; 5) и перпендикулярной к двум плоскостям 2x+y-2z+1 = 0, x+y+z-5 = 0

Добавил dashokkkk , просмотры: ☺ 1067 ⌚ 2018-11-06 13:24:24. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ sova

vector× vector=(3;-4;1) -направляющий вектор прямой, по которой пересекаются данные плоскости.
Это вектор является и нормальным вектором искомой плоскости.

Уравнение плоскости с нормальным вектором vector=(А;В;С) и проходящей через точку (x_(o);y_(o);z_(o)) имеет вид:
A*(x-x_(o)) + B * (y- y_(o)) + C *(z-z_(o))=0

Написать комментарий

Делим обе части равенства на π

Читайте также:  Как из андроида сделать windows phone

и умножаем на 4

frac<pi x><4>=(-1)^frac<pi ><4>+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *