Сократите дробь на наибольший общий делитель

Ответ оставил Гость

1) 42/ 24 = 7/4 ; 35/77 =5 /11 ; 48/60 = 8/10 ; 72/ /96 =9/ 12
2) 10/100 =1/10 ; 400 /1000 =4/10 ; 600/800 =3 /4 ; 800 /1000 =4/5
3 72/90 =8/10; 60/105 =12/ 21 ; 45 /150 =9/ 30; 84/120= 14/ 20;
4) 56/70 =8/10 ; 36/90 = 6/15 ; 66/110 =6/10 ; 96/100 =24/25

Нельзя всё время учиться. А для развлечения мы рекомендуем вам поиграть в отличную игру:

Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.

Что такое "сокращение дробей"

Сократить дробь – значит разделить ее числитель и знаменатель на общий делитель, положительный и отличный от единицы.

В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.

К примеру, возьмем обыкновенную дробь 6 24 и сократим ее. Разделим числитель и знаменатель на 2 , в результате чего получим 6 24 = 6 ÷ 2 24 ÷ 2 = 3 12 . В этом примере мы сократили исходную дробь на 2 .

Приведение дробей к несократимому виду

В предыдущем примере мы сократили дробь 6 24 на 2 , в результате чего получили дробь 3 12 . Нетрудно заметить, что эту дробь можно сократить еще. Как правило, целью сокращения дробей является получение в итоге несократимой дроби. Как привести дробь к несократимому виду?

Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.

a b = a ÷ Н О Д ( a , b ) b ÷ Н О Д ( a , b )

Читайте также:  Do not adjust перевод на русский

Приведение дроби к несократимому виду

Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.

Вернемся к дроби 6 24 из первого примера и приведем ее к несократимому виду. Наибольший общий делитель чисел 6 и 24 равен 6 . Сократим дробь:

6 24 = 6 ÷ 6 24 ÷ 6 = 1 4

Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.

Правило сокращения дробей

Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.

Правило сокращения дробей

Чтобы сократить дробь нужно:

  1. Найти НОД числителя и знаменателя.
  2. Разделить числитель и знаменатель на их НОД.

Рассмотрим практические примеры.

Пример 1. Сократим дробь.

Дана дробь 182 195 . Сократим ее.

Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.

195 = 182 · 1 + 13 182 = 13 · 14 Н О Д ( 182 , 195 ) = 13

Разделим числитель и знаменатель на 13 . Получим:

182 195 = 182 ÷ 13 195 ÷ 13 = 14 15

Готово. Мы получили несократимую дробь, которая равна исходной дроби.

Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.

Пример 2. Сократим дробь

Дана дробь 360 2940 . Сократим ее.

Для этого представим исходную дробь в виде:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7

Читайте также:  Как очистить айпад перед продажей

Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49

Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.

Пример 3. Сократим дробь

Сократим дробь 2000 4400 .

Сразу видно, что числитель и знаменатель имеют общий множитель 100 . Сокращаем дробь на 100 и получаем:

2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44

Далее замечаем, что числитель и знаменатель дроби 20 44 делятся на 2 . Сокращаем и приходим к виду:

20 44 = 20 ÷ 2 44 ÷ 2 = 10 22

Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:

Ответ или решение 2

В этом задании тебе необходимо сократите дробь на наибольший общий делитель её числителя и знаменателя: 4224

Сокращение дробей

Как известно обыкновенные дроби бывают двух видов: сократимые и несократимые. Определимся с понятием сокращение дробей. Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы общий делитель. В итоге мы получаем новую дробь, которая будет иметь меньший числитель и знаменатель.

Получение несократимой дроби

Конечная цель сокращения дроби – это получение несократимой дроби. Ее можно получить, есть и числить и знаменатель разделить на НОД (наибольший общий делитель). В результате такого сокращения мы и получим несократимую дробь. НОД – это наибольшее число, на которое можно сократить дробь.

Определение: Приведением обыкновенной дроби к несократимому виду называется деление числителя и знаменателя исходной сократимой дроби на их наибольший общий делитель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *