Соблюдая масштаб поэтапно построить графики функций

В-третьих — чтобы установить эмпирическое соотношение между двумя величинами.

Графики

Схемы

Избегайте переписывания

Запись измерений

ЗАПИСЬ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Число измерений

Повторение измерений

НЕКОТОРЫЕ СОВЕТЫ И УКАЗАНИЯ

Бесполезно приступать к выполнению работы без четкого представления об основных понятиях теории изучаемого явления. Главное условие успешного выполнения измерений заключается во внимательном ознакомлении с установкой перед измерениями, в ее тщательной проверке и наладке

Измерение отдельной величины необходимо повторить несколько раз. Такое повторение:

· помогает избежать ошибки при снятии показаний приборов и их записи;

· дает возможность оценить ошибку измерения.

Если в задаче исследуется зависимость одной величины от другой, число отдельных точек на различных участках кривой выбирается с таким расчетом, чтобы подробно исследовать места изгибов, максимумов, крутых скачков. В тех участках, где кривая идет плавно, ставить особенно много точек не имеет большого смысла.

Перед началом работы полезно произвести несколько предварительных измерений по всему диапазону изменения переменных, чтобы сразу познакомиться с основными чертами явления и правильно спланировать ход эксперимента.

Таблицы

Старайтесь всегда записывать результаты измерений в виде таблиц.

Все результаты измерений следует записывать немедленно и без какой либо обработки. При проведении и записи измерений хорошо проверить то, что вы записали, взглянув еще раз на прибор. Итак: посмотрите, запишите, проверьте.

Все первичные данные измерений надо обязательно сохранять. На первом этапе в этом вам помогут готовые формы таблиц, приводимые в описаниях работ, затем такие таблицы вы должны будете составлять самостоятельно.

Есть древняя китайская пословица: «Один рисунок лучше тысячи слов». Схема должна быть как можно проще, и на ней должно быть указано только то, что имеет отношение к эксперименту. Следует сильно искажать масштаб, если это позволяет четче выявить ту или иную особенность эксперимента.

В экспериментальной физике графиками пользуются для разных целей.

Во-первых, графики строят, чтобы определить некоторые величины.

Во-вторых, и это, пожалуй, самое главное, – графиками пользуются для наглядности.

При выборе масштаба нужно исходить из следующих соображений:

1. Экспериментальные точки не должны сливаться друг с другом. Из рисунка 1 довольно трудно извлечь полезную информацию. Поэтому лучше выбирать такой масштаб, чтобы расположить точки с разумным интервалом, как на рис.2. Если начальные значения x и y отличаются намного от нуля, то предпочтительнее начинать отсчет с некоторого значения, которое лишь немногим меньше найденного на опыте наименьшего значения переменного, откладываемого на данной оси, иначе на графике будет необоснованно много пустого места. После нанесения масштабных делений на осях около них пишут необходимые цифры;

Рис.1. Неудачный выбор масштаба. Рис.2. Более удачный выбор масштаба

2. Масштаб должен быть простым. Проще всего, если единице измеренной величины (или 10; 100; 0.1 единицы и т.д.) соответствует 1 см. Можно также выбрать такой масштаб, чтобы 1 см соответствовал 2 или 5 единицам. Других масштабов следует избегать просто потому, что иначе при нанесении точек на график придется производить арифметические подсчеты в уме;

3. Иногда приходится выбирать масштаб из теоретических соображений. Так, если нас интересует, в какой мере результаты удовлетворяют соотношению y = kx, то на нашем графике зависимости y от x обязательно должно быть начало координат.

Читайте также:  Пропадает интернет каждые 5 минут что делать

При выборе единиц измерения, как и в случае с таблицами, десятичный множитель удобнее отнести к единице измерения. Тогда деления на графике можно помечать цифрами 1, 2, 3 . или 10, 20, 30 . а не 10000, 20000 и т.д., или 0.0001, 0.0002 и т.д. См. на рис.3 пример, показывающий, как делать надписи вдоль осей графика и как указывать единицы измерения.

| следующая лекция ==>
И оптимизация механизма | Как строить графики

Дата добавления: 2014-01-04 ; Просмотров: 2992 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Вопрос по математике:

Соблюдая масштаб, поэтапно построить графики функций, используя методы деформации систем координат. Описать способы построения промежуточных функций.y=∣8x^2+8x−2∣

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Изучаем математику вместе!

  • Обязательно писать все знаки умножения
  • Десятичные дроби нужно разделять точкой
  • Список функций и констант смотрите ниже

URL-адрес:
html-код ссылки:

Как пользоваться программой:

  • Можно строить графики сразу нескольких функций. Для этого просто разделяйте функции точкой с запятой (;).
  • Масштаб изменяется с помощью кнопок «+» и «−». Кнопка «100%» меняет масштаб на стандартный.
  • Положение экрана можно менять, перетаскивая его мышью, а можно стрелками на панели слева.
  • Кнопка «·» в центре джойстика переносит начало координат в центр экрана.
  • Кнопка «↺» изменяет масштаб на стандартный и переносит начало координат в центр.
  • В форме под графиком можно выбрать точку, которую нужно расположить в центре экрана.

Режимы

Обычный. В этом режиме можно строить графики функций, заданных уравнением

Параметрический. Этот режим предназначен для построения графиков кривых, заданных параметрически, то есть в виде

Полярные координаты. Здесь можно построить график кривой, заданной в полярной системе координат, то есть уравнением где — радиальная координата, а — полярная координата.

Список констант

Константа Описание
pi Число =3,14159.
e Число Эйлера =2,71828.

Список функций

Функция Описание
+ − * / Сложение, вычитание, умножение, деление
( ) Группирующие скобки
abs() или | | Модуль числа. Выражение abs(x) эквивалентно |x| . Если функция содержит модуль под модулем, то пользуйтесь abs() . Например, если вы хотите построить график функции |1-x+|x+5|| , то нужно вводить abs(1-x+abs(x+5)) .
pow() или ^ Степень числа. Например, выражения pow(x, 3) и x^3 дают x в третьей степени
sqrt() Квадратный корень
sin() Синус
cos() Косинус
tg() Тангенс
ctg() Котангенс
arcsin() Арксинус
arccos() Арккосинус
arctg() Арктангенс
arcctg() Арккотангенс
ln() Натуральный логарифм числа
lg() Десятичный логарифм числа
log(a, b) Логарифм числа b по основанию a
exp() Степень числа e
sh() Гиперболический синус
ch() Гиперболический косинус
th() Гиперболический тангенс
cth() Гиперболический котангенс
Читайте также:  Самая нормальная версия вк

График функции

Графиком функции называется множество точек плоскости таких, что абсциссы и ординаты этих точек удовлетворяют уравнению .

Программа создана для школьников и студентов и позволяет строить графики функций онлайн. Во многих браузерах (например, Google Chrome) картинку с графиком функции можно сохранить на компьютер.

Пожалуйста, все предложения и замечания по работе программы пишите в комментариях.

Кроме того мы планируем создать библиотеку функций с интересными и забавными графиками. Если вы открыли функцию с таким графиком, то обязательно напишите об этом в комментариях! Ваше открытие будет опубликовано и станет носить ваше имя ;).

Построение графика функции онлайн : 41 комментарий

Ничего так.
При перетаскивании графика мышью если отпустить кнопку далеко за пределами графика, отпускание кнопки не обрабатывается.

Не получается построить функцию y=K/x (гипербола)

  1. Андрей Автор записи 26.04.2017 в 22:18

Валерий, а что вы вводите?

Отправил комментарий, он появился на странице, над ним заголовок: Построение графика функции онлайн: комментариев.

Привет! Дело в том, что пока комментарии появляются только после проверки. Пользователь, который написал комментарий, видит его на странице, а все остальные — нет.

Добавлена возможность строить графики в полярных координатах. Просто выберите режим «Полярные координаты» и задайте функцию (здесь — угол).

Не получается построить график функции y=x^-4.Ничего не выдаёт.

  1. Андрей Автор записи 27.01.2016 в 15:15

Алина, здесь нужно поставить скобки: y = x^(-4) . Так всё должно работать 😉

Было бы прекрасно добавить возможность построения кусочно-заданной функции, т.е. например f(x)==0; -x, x

  1. Андрей Автор записи 30.05.2016 в 20:14

Павел, спасибо за предложение! Я планирую доработать программу в ближайшее время, и обязательно учту Ваш комментарий 😉

Так и не появилось кусочно-заданных функций?

Очень полезно, спасибо!
Предложения по доработке:
1. Возможность построения графика неявно заданной функции.
2. Что бы при наведении на кривую графика фигуры курсор «прикреплялся» к точке, которая принадлежит кривой. Так же, как окна в Windows 7 при перетаскивании к границам экрана «прилипают» к этим границам. Так можно будет наверняка узнать, что я вижу вверху слева координаты именно нужной кривой, а не точки, что очень рядом.

r(t)=cos(1.52t) — очень красивая штука.

При построении y=x^(1/3) не уходит в отрицательную область(3 четверть), а должен уходить!

Неправильно строит функцию арккотангенса, т.е. arcctg(x). Вместо нее он строит arctg(1/x). У этих функций на положительных значениях аргумента графики совпадают, а на отрицательных различаются на «пи»

  1. Андрей Автор записи 29.11.2016 в 00:12

Инна, огромное спасибо за комментарий! Действительно, график арккотангенса строился неправильно. Исправил 😉

Программа прекрасная. Очень хотелось бы наносить свои надписи. Например, вместо Y написать — деньги, вместо X — срок жизни. Как скопировать график в Word?
Где можно указать диапазон изменения X и Y?

  1. Андрей Автор записи 20.12.2016 в 21:29
Читайте также:  Ubuntu server системные требования

Спасибо! Наносить свои подписи сейчас нельзя. Чтобы вставить график в Word, сохраните график как картинку (клик по графику правой кнопкой мыши, далее «Сохранить картинку как») и вставьте её.
Указать диапазон для x тоже пока нельзя, но можно написать, например, вот так: y(x) = sin(x) * (x > 1) * (x . Здесь функция sin(x) строится для x от 1 до 4, все остальные значения равны 0.

🙂 Писал сам такую программу в 1999 году в школе на паскале, с такими же возможностями, кусочно-заданная также была включена.
Советую добавить отдельное масштабирование по осям X и Y, а также историю вводимых функций.

  1. Андрей Автор записи 14.02.2017 в 01:35

Максим, спасибо за отзыв! Новая версия как раз в разработке 😉

дайте цвет, зависящий от параметра

  1. Андрей Автор записи 02.03.2017 в 22:44

qqq, спасибо за комментарий, отличная идея! Как раз пишу новую версию 😉

В обычном режиме невозможно строить графики вида x=const (х=1, х=20, х=pi/3)
В режиме полярной оси координат не нужны и только лишь путают оси X и Y (откуда они там вообще?)
Соответственно и шкала значений по этим осям измеряет непонятно что. Координата точки в полярной системе координат это пара вида радиус, угол (r, t) — т.е. в текущей версии r конкретной точки равен sqrt (x^2 + y^2)
Полярная система координат должна выглядеть вот так: https://upload.cc/i/CnTf7G.jpg
_
Не дочерчивает график: https://upload.cc/i3/vbpI6m.png
Функция y=cos(x) четная, следовательно, y(-x)=y(x), поэтому значение функции r(t)=6cos(3t), при t=-pi/9 и t=pi/9 равно 3. На картинке видно что при t=pi/9 функция не r=3
Хотелось бы иметь возможность строить в одной плоскости графики функций как заданных в виде y=f(x), так и заданных параметрически, а так же выставлять свой масштаб.
В остальном все очень удобно, спасибо.

Неправильно строит графики уравнений вида r=cos(a*t), где а — чётное число(в полярной системе координат).

Добрый день.
Сделайте, пожалуйста, возможность менять масштаб отдельно по X и по Y.
Спасибо.

не строит функцию
y=|(|x|-2)^2-3|

  1. Андрей Автор записи 10.11.2017 в 01:52

Используйте функцию abs(), это поможет программе правильно прочитать выражение:
y = |(abs(x)-2)^2-3|

Не могу построить график с ограниченным параметром, y = x^2, x

Подскажите, как правильно описать у вас такой график: |y-1|=4-|x-1| ?

График y=|lg(x)| рисует при отрицательных x.

Можно ли построить график кубического корня? А корня шестой степени? Если да, то как?

  1. Андрей Автор записи 13.10.2018 в 15:38

Да, можно, вот так: x^(1/3); x^(1/6)

А можно выбирать цвет графиков?
Если нет, то когда 🙂

Попробуйте это: x!^x!

Укажите в инструкциях, что здесь МОЖНО построить (y=x!)
Кстати, сделайте так, чтобы можно было включать/выключать потребность залесть в комплексные числа, то есть, к примеру, при построении (y=sqrt(x)^2) можно как и рисовать график при x

классная программа , только лагает

sqrt(3x+3) — почему начало с -1?? объясните пж(

А как построить системы уравнений?

x = t — 0.8 * sin(t * (1.1) ^ t * 20) * cos(t) / sqrt(1 + cos(t) * cos(t)) / (1.3) ^ t
y = sin(t) / (1.1) ^ t + 0.8 * sin(t * (1.1) ^ t * 20) / sqrt(1 + cos(t) * cos(t)) / (1.3) ^ t
t [0, 50]
Затухающая синусоида поверх затухаущей синусоиды, выглядит красиво)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *